|
- 2018
热处理对碳纤维/聚酰胺6复合材料界面结晶及力学性能的影响
|
Abstract:
探究了热处理对聚酰胺6(PA6)在碳纤维(CF)表面的结晶行为及其界面力学性能的影响。利用差示扫描量热法(DSC)、偏光显微镜(POM)观察法等分析手段考察了热处理对PA6在CF表面结晶行为的影响,揭示了在热处理过程中,PA6进行链段重排,形成小且不完善的新结晶,导致结晶度的上升以及界面横晶形貌的完善;进一步通过单丝微球脱粘实验和单向CF/PA6复合材料横向拉伸实验考察了热处理对PA6与CF的界面结合性能的影响,揭示了经退火热处理的试样由于弱界面和应力集中的减少使界面剪切强度增加且单位体积断裂能下降。 The effects of heat treatments on the crystallization behavior of polyamide 6 (PA6) on the surface of carbon fiber (CF) and their interfacial properties were explored. The effects of heat treatments on the crystallization behavior of PA6 on the surface of CF were characterized by differential scanning calorimetry (DSC) and polarizing microscope (POM) observation. The results show that the PA6 segments are rearranged during the heat treatment to form small and imperfect new crystals, which leads to the increase of crystallinity and the improvement of interfacial transcrystallization morphology. The interfacial property of CF/PA6 composites was characterized by micro-debonding test and unidirectional CF/PA6 composites transverse tensile test. It is revealed that the decrease of the weak interface and the stress concentration lead to the increase of the interfacial shear strength and the decrease of the fracture energy per unit volume of the annealed samples of CF/PA6 composites.
[1] | BOTELLHO E C, SCHERBAKOFF N, REZENDE M C. Study of polyamide 6/6 synthesis carried out by interfacial polymerization on carbon fibre[J]. Polymer International, 2002, 51(11):1261-1267. |
[2] | WANG X, XU D, LIU H Y, et al. Effects of thermal residual stress on interfacial properties of polyphenylene sulphide/carbon fibre (PPS/CF) composite by microbond test[J]. Journal of Materials Science, 2016, 33(1):1-10. |
[3] | GAO S L, KIM J K. Cooling rate influences in carbon fibre/PEEK composites-Part 1:Crystallinity and interface adhesion[J]. Composites Part A:Applied Science and Manufacturing, 2000, 31(6):517-530. |
[4] | SCHULZ E, KALINKA G, AUERSCH W. Effect of transcrystallization in carbon fiber reinforced poly (p-phenylene sulfide) composites on the interfacial shear strength investigated with the single fiber pull-out test[J]. Journal of Macromolecular Science Part B:Physics, 1996, 35(3-4):527-546. |
[5] | NIELSEN A S, PYRZ R. The effect of cooling rate on thermal residual strains in carbon/polypropylene microcomposites[J]. Science and Engineering of Composite Materials, 1998, 7(1-2):1-22. |
[6] | LIU B, WANG X, LONG S, et al. Interfacial micromechanics of carbon fiber-reinforced polyphenylene sulfide compo-sites[J]. Composite Interfaces, 2014, 21(4):359-369. |
[7] | ZANG C G, ZHU X D, JIAO Q J. Enhanced mechanical and electrical properties of nylon-6 composite by using carbon fiber/graphene multiscale structure as additive[J]. Journal of Applied Polymer Science, 2015, 132(19), 41968. |
[8] | WU S H, WANG F Y, MA C C M. Mechanical, thermal and morphological properties of glass fiber and carbon fiber reinforced polyamide-6 and polyamide-6/clay nanocomposites[J]. Materials Letters, 2001, 49(6):327-333. |
[9] | PARLEVLIET P P, BERSEE H E N, BEUKERS A. Resi-dual stresses in thermoplastic composites-A study of the literature-Part I:Formation of residual stresses[J]. Composites Part A:Applied Science and Manufacturing, 2006, 37(11):1847-1857. |
[10] | YANG L, THOMASON J L, ZHU W. The influence of thermo-oxidative degradation on the measured interface strength of glass fibre-polypropylene[J]. Composites Part A:Applied Science and Manufacturing, 2011, 42(10):1293-1300. |
[11] | YAN X, IMAI Y, SHIMAMOTO D, et al. Relationship study between crystal structure and thermal/mechanical properties of polyamide 6 reinforced and unreinforced by carbon fiber from macro and local view[J]. Polymer, 2014, 55(23):6186-6194. |
[12] | YOUSSEF Y, DENAULT J. Thermoformed glass fiber reinforced polypropylene:Microstructure, mechanical properties and residual stresses[J]. Polymer Composites, 1998, 19(3):301-309. |
[13] | LIU T, PHANG I Y, SHEN L, et al. Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites[J]. Macromolecules, 2004, 37(19):7214-7222. |
[14] | LI H, WANG Y, ZHANG C, et al. Effects of thermal histories on interfacial properties of carbon fiber/polyamide 6 composites:Thickness, modulus, adhesion and shear strength[J]. Composites Part A:Applied Science and Manufacturing, 2016, 85:31-39. |
[15] | FOLKES M J, HARDWICK S T. The mechanical properties of glass/polypropylene multilayer laminates[J]. Journal of Materials Science, 1990, 25(5):2598-2606. |
[16] | JIANG Z, ZHANG H, ZHANG Z, et al. Improved bonding between PAN-based carbon fibers and fullerene-modified epoxy matrix[J]. Composites Part A:Applied Science and Manufacturing, 2008, 39(11):1762-1767. |
[17] | 邢丽英, 包建文, 礼嵩明, 等. 先进树脂基复合材料发展现状和面临的挑战[J]. 复合材料学报, 2016, 33(7):1327-1338. XING L Y, BAO J W, LI S M, et al. Development status and facing challenge of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica, 2016, 33(7):1327-1338(in Chinese). |
[18] | 刘文博, 王荣国, 矫维成, 等. CF/PPEK复合材料界面结构与性能[J]. 复合材料学报, 2008, 25(4):45-50. LIU W B, WANG R G, JIAO W C, et al. Interfacial structure and properties of CF/PPEK composites[J]. Acta Materiae Compositae Sinica, 2008, 25(4):45-50(in Chinese). |
[19] | 邓天煜, 陈星陶, 吕国玉, 等. 石英纤维/聚酰胺46复合材料的制备及表征[J]. 复合材料学报, 2014, 31(4):895-901. DENG T Y, CHEN X T, LV G Y, et al. Preparation and characterization of quartz fiber/polyamide-46 compostites[J]. Acta Materiae Compositae Sinica, 2014, 31(4):895-901(in Chinese). |
[20] | BOTELHO E C, FIGIEL L, REZENDEB M C, et al. Mechanical behavior of carbon fiber reinforced polyamide composites[J]. Composites Science and Technology, 2003, 63(13):1843-1855. |
[21] | ZHOU S, ZHANG Q, WU C, et al. Effect of carbon fiber reinforcement on the mechanical and tribological properties of polyamide6/polyphenylene sulfide composites[J]. Materials & Design, 2013, 44:493-499. |
[22] | PARLEVLIET P P, BERSEE H E N, BEUKERS A. Residual stresses in thermoplastic composites-a study of the literature-Part Ⅲ:Effects of thermal residual stresses[J]. Composites Part A:Applied Science and Manufacturing, 2007, 38(6):1581-1596. |
[23] | YE L, SCHEURING T, FRIEDRICH K. Matrix morphology and fibre pull-out strength of T700/PPS and T700/PET thermoplastic composites[J]. Journal of Materials Science, 1995, 30(19):4761-4769. |
[24] | KHANNA Y P, KUHN W P. Measurement of crystalline index in nylons by DSC:Complexities and recommendations[J]. Journal of Polymer Science Part B:Polymer Physics, 1997, 35(14):2219-2231. |
[25] | KOBAYASHI D, HSIEH Y T, TAKAHARA A. Interphase structure of carbon fiber reinforced polyamide 6 revealed by microbeam X-ray diffraction with synchrotron radiation[J]. Polymer, 2016, 89:154-158. |
[26] | BONNET M, ROGAUSCH K D, PETERMANN J. The endothermic "annealing peak" of poly(phenylene sulphide) and poly(ethylene terephthalate)[J]. Colloids & spolymer Science, 1999, 277(6):513-518. |
[27] | LIU T, YAN S, BONNET M, et al. DSC and TEM investigations on multiple melting phenomena in isotactic polystyrene[J]. Journal of Materials Science, 2000, 35(20):5047-5055. |
[28] | SPE. SPE/ANTEC 1999 Proceedings 1998[M]. Boca Raton:CRC Press, 1998. |
[29] | QI G, DU S, ZHANG B, et al. Evaluation of carbon fiber/epoxy interfacial strength in transverse fiber bundle compo-site:Experiment and multiscale failure modeling[J]. Compo-sites Science and Technology, 2014, 105:1-8. |