|
- 2015
碳化与氯盐复合作用下水泥浆体的微结构演变
|
Abstract:
为了阐明碳化与氯盐复合作用下硬化水泥浆体的微结构, 基于X射线计算机断层扫描成像(X-CT)和电子探针微区分析(EPMA)技术探明了氯盐对水泥浆体碳化速率的影响, 测定了碳化作用下水泥浆体内Cl、S和Na元素的浓度分布。结果表明:氯盐可细化养护龄期为28 d的水泥浆体孔结构, 提高其密实度并减缓碳化速度;碳化作用下水泥浆体的碳化区易出现裂缝, 二氧化碳气体通过这些裂缝扩散到水泥浆体内部进行碳化, 致使水泥浆体碳化深度不均匀;碳化过程中Cl、S和Na元素向非碳化区迁移和浓缩, 初始均匀分布的元素在碳化区含量减少, 在非碳化区含量升高。 所得结论为混凝土结构耐久性设计提供科学的理论依据。 In order to clarify the microstructure of cement paste under combined effect of carbonation and chloride salt, based on X-ray computed tomography (X-CT) and electron probe micro analyses (EPMA) technologies, the impact of chloride salt on carbonation rate of cement paste was investigated and element concentration distributions of Cl, S and Na in cement paste under the effect of carbonation were measured. The results show that the chloride salt can refine the pore structures of cement paste, improve the degree of density and slow down the carbonation rate of the cement paste with maintenance period of 28 d. The cracks in carbonation district of cement paste are easily generated under the effect of carbonation, and carbon dioxide gas diffuses into the inside of cement paste by those cracks to carbonize, leading to the uneven carbonation depth of cement paste. During carbonation process, Cl, S and Na elements migrate and concentrate to the non-carbonation area, the contents of elements which are distributed in initial state uniformly decease in carbonation area and increase in non-carbonated area, thus provide the scientific basis for durability design of concrete construction. 国家自然科学基金(51278255, 51308308, 51478227); 宁波市科技计划(2013C51006, 2015A610300)
[1] | Pedro F, Carlos C. Carbonation service life modelling of RC structures for concrete with Portland and blended cements[J]. Cement and Concrete Composition, 2013, 37(6): 171-184. |
[2] | Suryavanshi A K, Narayan R. Stability of Friedel's salt in carbonated concrete structural elements[J]. Cement and Concrete Research, 1996, 26(5): 729-741. |
[3] | Kwon S J, Song H W. Analysis of carbonation behavior in concrete using neural network algorithm and carbonation modeling[J]. Cement and Concrete Research, 2010, 40(1): 119-127. |
[4] | Beyene1 M, Snyder A, Lee R J, et al. Alkali silica reaction as a root cause of distress in a concrete made from alkali carbonate reaction potentially susceptible aggregates[J]. Cement and Concrete Research, 2013, 51(4): 85-95. |
[5] | Owsiak Z. Alkali aggregate reaction in concrete containing high-alkali cement and granite aggregate[J]. Cement and Concrete Research, 2004, 34(2): 7-11. |
[6] | Marques P F, Costa A. Service life of RC structures: Carbonation induced corrosion[J]. Construction and Building Materials, 2010, 24(3): 258-265. |
[7] | Liu J Z, Xing F, He Z M, et al. Study on critical molar ratios of nitrite and chloride in reinforced concrete[J]. Journal of the Chinese Ceramic Society, 2010, 38(4): 615-620 (in Chinese). 柳俊哲, 邢锋, 贺智敏, 等. 钢筋混凝土中亚硝酸根与氯离子的临界摩尔比[J]. 硅酸盐学报, 2010, 38(4): 615-620. |
[8] | Liu J Z, Sun W, Chen J B, et al. Carbonation rate and microstructural characteristics of hardened cement paste with high alkali content[J]. Journal of the Chinese Ceramic Society, 2014, 42(8): 1005-1010 (in Chinese). 柳俊哲, 孙武, 陈剑斌, 等. 高碱含量水泥净浆的碳化速度及微结构特征[J]. 硅酸盐学报, 2014, 42(8): 1005-1010. |
[9] | Castellote M, Andrade C, Turrillas X, et al. Accelerated carbonation of cement pastes in situ monitored by neutron diffraction[J]. Cement and Concrete Research, 2008, 38(12): 1365-1373. |
[10] | Yang T, Keller B, Magyari E. Direct observation of the carbonation process on the surface of calcium hydroxide crystals in hardened cement paste using an atomic force microscope[J]. Journal of Materials Science, 2003, 38(2): 1909-1916. |
[11] | Rossella P, Claudia C, Paulo M. A coupled mechanical and chemical damage model for concrete affected by alkali silica reaction[J]. Cement and Concrete Research, 2013, 53(6): 196-210. |
[12] | Liu Z Q, Deng D H, de Schutte G, et al. Chemical sulfate attack performance of partially exposed cement and cement fly ash paste[J]. Construction and Building Materials, 2012, 28(1): 230-237. |
[13] | Essam A. Hydration reaction of tricalciumaluminate in different systems[J]. Cement and Concrete Research, 2005, 35(6): 1638-1640. |
[14] | Zitrou E, Nikolaou J, Tsakiridis P E. Atmospheric corrosion of steel reinforcing bars produced by various manufacturing process[J]. Construction and Building Materials, 2007, 21(6): 1161-1169. |
[15] | Liu J Z, Yan J L, Ba M F, et al. Effects of carbonation on chloride ion distribution in hardened cement concrete[J]. Journal of Building Materials, 2015, 18(1): 115-119 (in Chinese). 柳俊哲, 闫加利, 巴明芳, 等. 碳化对水泥混凝土内氯离子分布的影响[J]. 建筑材料学报, 2015, 18(1): 115-119. |
[16] | Song H W, Lee C H, Ann K Y. Factors influencing chloride transport in concrete structures exposed to marine environments[J]. Cement and Concrete Composition, 2008, 30(2): 113-121. |
[17] | Yang L M, Yu H F, Ma H Y. Resistance of concrete to magnesium sulfate attack under combined action of carbonation and dry-wet cycles[J]. Acta Materiae Compositae Sinica, 2012, 29(5): 127-133 (in Chinese). 杨礼明, 余红发, 麻海燕. 混凝土在碳化和干湿循环作用下的抗硫酸盐腐蚀性能[J]. 复合材料学报, 2012, 29(5): 127-133. |