全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

飞机典型薄壁复合材料夹层结构整体屈曲
Overall buckling of typical thin-wall sandwich composites applied on the aircraft

DOI: 10.13801/j.cnki.fhclxb.20180402.006

Keywords: 复合材料,夹层结构,整体屈曲,有限元,解析法
composites
,sandwich structure,overall buckling,finite element method(FEM),analytical solution

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究飞机机身无筋无框复合材料典型薄壁夹层结构在型号上应用的可行性,本文采用解析方法、有限元方法和试验方法对蜂窝夹层复合材料结构的面内压缩和剪切整体屈曲开展系统研究。基于经典层合板理论和工程解析方法推导蜂窝夹层复合材料的压缩和剪切屈曲载荷随试验件尺寸的变化规律。依据某型飞机机身典型结构分别设计压缩和剪切试验件尺寸大小、边界条件和加载方式。利用有限元商用软件ABAQUS对试验设计建立虚拟试验分析,对比验证解析方法和有限元方法的一致性。最后通过真实试验方法确定解析方法和有限元方法的有效性,并验证典型薄壁夹层结构的承载能力和破坏模式。结果显示,压缩试验结果失效模式与理论预测一致,故3种方法得到的结构整体失稳载荷相近,验证了理论方法的有效性;剪切试验结果发生局部破坏,故试验结果偏低,但有限元方法与解析方法所得结果一致,解析方法相对保守。 In order to study the feasibility of applying typical thin-wall sandwich composite without ribs and frames reinforcement on the aircraft fuselage, overall buckling performance of the honeycomb sandwich composite under the in-plane compression and shear load was studied using analytical method, finite element method (FEM) and experiment. Based on the classical laminated plate theory and the engineering analytical method, the variation of the buckling load of honeycomb sandwich composites with the sample size was given and compared with the finite element results. Two typical sizes of sandwich structure were designed, and boundary conditions and loading methods were defined based on a certain type of typical aircraft fuselage structure. Finally, the buckling loads obtained by analytic solution and FEM were compared with the experimental results, which verified the bearing capacity and failure mode of the typical thin-wall sandwich structure. The results show that the test compression failure mode is consistent with the theoretical prediction, so the overall buckling load calculated through the three methods is almost equal to each other. Because local failures occur in the shear test, so the experimental result is lower than FEM result and analytic result. However, the FEM results and the analytical results are consistent, which could verify their effectiveness. And it's found that the analytical method is relatively conservative. 民用飞机专项科研(MJZ-2014-F-13);黑龙江省青年科学基金(QC2015003)

References

[1]  张俊琪, 刘龙权, 汪海. 薄面板复合材料蜂窝夹层结构冲击试验[J]. 复合材料学报, 2014, 31(4):1063-1071. ZHANG Junqi, LIU Longquan, WANG Hai. Test of composite honeycomb sandwich structure with thin facesheets subject to impact load[J]. Acta Materiae Compositae Sinica, 2014, 31(4):1063-1071(in Chinese).
[2]  郑锡涛, 孙秦, 李野, 等. 全厚度缝合复合材料泡沫芯夹层结构力学性能研究与损伤容限评定[J]. 复合材料学报, 2006, 23(6):29-37. ZHENG Xitao, SUN Qin, LI Ye, et al. Mechanical behavior and damage tolerance tests of composites through-thickness stitched foam sandwich panels[J]. Acta Materiae Compositae Sinica, 2006, 23(6):29-37(in Chinese).
[3]  朱翔. 复合材料蜂窝夹层结构总体稳定性分析的有限元法[J]. 教练机, 2010(1):17-19. ZHU Xiang. Finite element method for general stability of honeycomb sandwich structure composite material based on NASTRAN[J]. Trainer, 2010(1):17-19(in Chinese).
[4]  侯瑞, 杨杰. 飞机后缘复合材料夹层结构的稳定性计算方法[J]. 航空科学技术, 2014(9):37-39. HOU Rui, YANG Jie. Stability calculation method of aircraft trailing edge composite sandwich structure[J]. Aeronautical Science & Technology, 2014(9):37-39(in Chinese).
[5]  KANT T, SWAMINATHAN K. Analytical solutions using a higher order refined theory for the stability analysis of laminated composite and sandwich plates[J]. Structural Engineering & Mechanics, 2000, 10(4):337-357.
[6]  SAYYAD A S, GHUGAL Y M. Bending, buckling and free vibration of laminated composite and sandwich beams:A critical review of literature[J]. Composite Structures, 2017, 171:486-504.
[7]  杜正兴, 薛应举, 刘洪权. 复合材料蜂窝夹层结构的总体稳定性研究[J]. 强度与环境, 2014(4):27-32. DU Zhengxing, XUE Yingju, LIU Hongquan. General stability research of honeycomb sandwich structure[J]. Structure & Environment Engineering, 2014(4):27-32(in Chinese).
[8]  窦润龙, 胡培. 复合材料泡沫夹层结构在民机中的应用[J]. 民用飞机设计与研究, 2004(3):42-45. DOU Runlong, HU Pei. Application of composite foam sandwich structures in civil aircraft[J]. Civil Aircraft Design & Research, 2004(3):42-45(in Chinese).
[9]  王博, 王斌, 程耿东. Kagome蜂窝夹层平板的多功能优化设计[J]. 复合材料学报, 2007, 24(3):109-115. WANG Bo, WANG Bin, CHENG Gengdong. Multifunctional design of sandwich panels with Kagome-like cores[J]. Acta Materiae Compositae Sinica, 2007, 24(3):109-115(in Chinese).
[10]  王兴业, 杨孚标, 曾竟成, 等. 夹层结构复合材料设计原理及其应用[M]. 北京:化学工业出版社, 2007. WANG Xingye, YANG Fubiao, ZENG Jingcheng, et al. Design principle and application of composite sandwich structures[M]. Beijing:Chemical Industry Press, 2007(in Chinese).
[11]  李顺林. 复合材料工作手册[M]. 北京:航空工业出版社, 1988:361-378. LI Shunlin. Work manual for composite materials[M]. Beijing:Aviation Industry Press, 1988:361-378(in Chinese).
[12]  颜万亿. 飞机复合材料结构设计与分析[M]. 上海:上海交通大学出版社, 2011. YAN Wanyi. Design and analysis of aircraft composite structures[M]. Shanghai:Shanghai Jiao Tong University Press, 2011(in Chinese).
[13]  白瑞祥, 陈浩然, 苏长健. 复合材料夹层板压-剪稳定性有限元分析[C]//中国力学学会青年工作委员会学术年会, 1999. BAI Ruixiang, CHEN Haoran, SU Changjian. Finite element analysis of compression-shear stability of composite laminate[C]//Academic Annual Meeting of the Youth Working Committee of the Chinese Society of Mechanics, 1999(in Chinese).
[14]  SAHOO R, SINGH B N. Assessment of inverse trigonometric zigzag theory for stability analysis of laminated composite and sandwich plates[J]. International Journal of Mechanical Sciences, 2015, 101-102(4):145-154.
[15]  ZHEN W, CHEN W. An assessment of several displacement-based theories for the vibration and stability analysis of laminated composite and sandwich beams[J]. Composite Structures, 2008, 84(4):337-349.
[16]  KAHYA V. Buckling analysis of laminated composite and sandwich beams by the finite element method[J]. Composites Part B:Engineering, 2016, 91:126-134.
[17]  GROVER N, MAITI D K, SINGH B N. An efficient C0 finite element modeling of an inverse hyperbolic shear deformation theory for the flexural and stability analysis of laminated composite and sandwich plates[J]. Finite Elements in Analysis & Design, 2014, 80(22):11-22.
[18]  AIELLO M A, CORVAGLIA P, HOLLAWAY L. Experimental and numerical approach to buckling of laminated composite sandwich panel[J]. Advanced Polymer Composites for Structural Applications in Construction, 2004:457-464.
[19]  张铁亮, 丁运亮, 金海波. 基于有限元法的蜂窝夹层结构稳定性研究[J]. 复合材料学报, 2012, 29(3):184-190. ZHANG Tieliang, DING Yunliang, JIN Haibo. Stability problem of honeycomb sandwich structures based on finite element method[J]. Acta Materiae Composite Sinica, 2012, 29(3):184-190(in Chinese).
[20]  汪海, 沈真. MIL-HDBK-17F复合材料手册, 第三卷, 聚合物基复合材料的使用、设计和分析[M]. 上海:上海交通大学出版社, 2015. WANG Hai, SHEN Zhen. MIL-HDBK-17F Composite material manual, Volume three, The use, design and analysis of polymer matrix composites[M]. Shanghai:Shanghai Jiao Tong University Press, 2015(in Chinese).
[21]  童贤鑫, 汪海. 复合材料结构稳定性分析指南[M]. 北京:航空工业出版社, 2002. TONG Xianjin, WANG Hai. Analysis guide of stability of composite structure[M]. Beijing:Aviation Industry Press, 2002(in Chinese).
[22]  岳珠峰, 王富生, 王佩艳, 等. 飞机复合材料结构分析与优化设计[M]. 北京:科学出版社, 2011. YUE Zhufeng, WANG Fusheng, WANG Peiyan, et al. Structural analysis and optimization design of aircraft compo-site materials[M]. Beijing:Science Press, 2011(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133