全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

纳米CaCO3对水泥-石灰石粉浆体流变作用
Rheological properties of cement-ground limestone paste with nano-CaCO3

DOI: 10.13801/j.cnki.fhclxb.20171124.001

Keywords: 纳米CaCO3,石灰石粉,动态屈服应力,稠度系数,触变性
nano-CaCO3
,ground limestone,dynamic yield stress,consistency coefficient,thixotropy

Full-Text   Cite this paper   Add to My Lib

Abstract:

试验采用Rheolab QC型旋转黏度计测试了掺纳米CaCO3的水泥-石灰石粉浆体的流变曲线,应用Herschel-Bulkley流变模型对其剪切应力-速度(τ-γ)曲线进行拟合,得到浆体的动态屈服应力、稠度系数和流变指数,并用触变环面积表征浆体的触变性。结果表明:随石灰石粉掺量的增加,水泥-石灰石粉浆体的动态屈服应力逐渐减小,稠度系数增大,触变性先增大后减小;纳米CaCO3未改变水泥-石灰石粉浆体的流变类型都呈现出剪切稀化行为;随纳米CaCO3掺量的增加,水泥-石灰石粉浆体动态屈服应力和稠度逐渐增大,触变性减小,纳米CaCO3使水泥-石灰石粉浆体流变性能变差,但使其稳定性增强。 The rheological curves of the cement-ground limestone paste were determined by Rheolab QC rotation viscometer. Dynamic yield stress, consistency coefficient and rheological index of the paste were obtained by fitting the measured τ-γ curves based on Herschel-Bulkley model and thixotropy was characterized by the area of thixotropic hysteresis loop. The results indicate that:with the increase of ground limestone content, dynamic yield stress decreases gradually, consistency coefficient increases, while thixotropy increases and then decreases. The addition of nano-CaCO3 has little effect on the rheological type of the cement-ground limestone paste and they both present a shear thinning behavior. With the increase of nano-CaCO3 content, dynamic yield stress and consistency coefficient increase gradually, while thixotropy decreases. The addition of nano-CaCO3 results in a poor rheological properties of the cement-ground limestone pastes but enhances its stability. 国家自然科学基金(51278497)

References

[1]  肖佳, 金勇刚, 勾成福, 等. 石灰石粉对水泥浆体水化特性及孔结构的影响[J]. 中南大学学报(自然科学版), 2010, 41(6):2313-2320. XIAO Jia, JING Yonggang, GOU Chengfu, et al. Effect of ground limestone on hydration characteristics and pore structure of cement pastes[J]. Journal of Central South University(Science and Technology), 2010, 41(6):2313-2320(in Chinese).
[2]  TSIVILIS S, BATIS G, CHANIOTAKIS E, et al. Properties and behavior of limestone cement concrete and mortar[J]. Cement and Concrete Research, 2000, 30(10):1679-1683.
[3]  SATO T, DIALLO F. Seeding effect of nano-CaCO3 on the hydration of tricalcium silicate[J]. Transportation Research Record Journal of the Transportation Research Board, 2010, 2141(2141):61-67.
[4]  SHAIKH F U A, SUPIT S W M. Effects of superplasticizer types and mixing methods of nanoparticles on compressive strengths of cement pastes[J]. Journal of Materials in Civil Engineering, 2016, 28(2):UNSP 06015008.
[5]  CAMILETTI J, SOLIMAN A M, NEHDI M L. Effects of nano and micro-limestone addition on early-age properties of ultra-high-performance concrete[J]. Materials and Structures, 2013, 46(6):881-898.
[6]  徐文, 郭飞, 田倩. 不同超塑化剂掺量下石灰石粉水泥净浆流变性能[J]. 建筑材料学报, 2014, 17(2):274-279. XU Wen, GUO Fei, TIAN Qian. Rheological properties of cement paste with limestone powder at different dosages of superplasticizers[J]. Journal of Building Materials, 2014, 17(2):274-279(in Chinese).
[7]  LI W, HUANG Z, CAO F, et al. Effects of nano-silica and nano-limestone on flowability and mechanical properties of ultra-high-performance concrete matrix[J]. Construction and Building Materials, 2015, 95(1):366-374.
[8]  肖佳, 吴婷, 何彦琪, 等. 水泥-白云石粉浆体流变性能研究[J]. 硅酸盐通报, 2016, 35(3):891-896. XIAO Jia, WU Ting, HE Yanqi, et al. Rheological properties of cement-ground dolomite[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(3):891-896.
[9]  管文, 谈慕华, 俞海勇, 等. 粉煤灰-水泥浆体的流变性能[J]. 建筑材料学报, 2001, 4(4):339-345. GUANG Wen, TAN Muhua, YU Haiyong, et al. Rheological properties of cement pastes with fly ash[J]. Journal of Building Materials, 2001, 4(4):339-345(in Chinese).
[10]  FLATT R J. Towards a prediction of superplasticized concrete rheology[J]. Materials and Structures, 2004, 37(5):289-300.
[11]  DIAB A M, ELMOATY A E M A, ALY A A. Long term study of mechanical properties, durability and environmental impact of limestone cement concrete[J]. Alexandria Engineering Journal, 2016, 55(2):1465-1482.
[12]  SHAIKH F U A, SUPIT S W M. Chloride induced corrosion durability of high volume fly ash concretes containing nano particles[J]. Construction and Building Materials, 2015, 99:208-225.
[13]  VARHEN C, DILONARDO I, ROMANO R C D O, et al. Effect of the substitution of cement by limestone filler on the rheological behaviour and shrinkage of microconcretes[J]. Construction and Building Materials, 2016, 125:375-386.
[14]  CAMILETTI J, SOLIMAN A M, NEHDI M L. Effects of nano- and micro-limestone addition on early-age properties of ultra-high-performance concrete[J]. Materials and Structures, 2013, 46(6):881-898.
[15]  NEHDI M, RAHMAN M A. Estimating rheological properties of cement pastes using various rheological models for different test geometry, gap and surface friction[J]. Cement and Concrete Research, 2004, 34(11):1993-2007.
[16]  ATZENI C, MASSIDDA L, SANNA U. Comparison between rheological models for portland cement pastes[J]. Cement and Concrete Research, 1985, 15(3):511-519.
[17]  HOSSEINI P, HOSSEINPOURPIA R, PAJUM A, et al. Effect of nano-particles and aminosilane interaction on the performances of cement-based composites:An experimental study[J]. Construction and Building Materials, 2014, 66(1):113-124.
[18]  马昆林, 龙广成, 谢友均, 等. 水泥-粉煤灰-石灰石粉复合浆体的流变性能[J]. 硅酸盐学报, 2013, 41(5):582-587. MA Kunlin, LONG Guangcheng, XIE Youjun, et al. Rheological properties of compound pastes with cement-fly ash-limestone powder[J]. Journal of the Chinese Ceramic Society, 2013, 41(5):582-587(in Chinese).
[19]  ROUSSEL N, OVARLEZ G, GARRAULT S, et al. The origins of thixotropy of fresh cement pastes[J]. Cement and Concrete Research, 2012, 42(1):148-157.
[20]  彭建伟, 邓德华, 元强, 等. 硅酸盐水泥-阳离子乳化沥青浆体的流变模型[J]. 硅酸盐学报, 2014, 42(5):621-628. PENG Jianwei, DENG Dehua, YUAN Qiang, et al. Rheological models for portland cement-cationic emulsified asphalt pastes[J]. Journal of the Chinese Ceramic Society, 2014, 42(5):621-628(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133