全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

高温N2气氛下树脂结合刚玉材料中阿隆相的形成机制
Formation mechanism of AlON in resin bonded corundum materials under N2-blowing at high temperature

DOI: 10.13801/j.cnki.fhclxb.20180328.002

Keywords: 电熔刚玉,烧结刚玉,碳热还原氮化,阿隆(AlON),模型
fused corundum
,sintered alumina,carbothermal reduction nitridation,AlON,model

Full-Text   Cite this paper   Add to My Lib

Abstract:

以酚醛树脂为结合剂,分别以100wt%烧结刚玉细粉、100wt%电熔刚玉细粉和50wt%烧结刚玉加50wt%电熔刚玉混合细粉为原料制备试样,试样在N2气氛下经1 500℃和1 600℃烧成,对烧后试样进行XRD、SEM和EDAS表征分析。结果表明:1 500℃烧后试样中生成了γ-AlON(Al5O6N)和12H多型体(Al6O3N4),1 600℃烧后试样中生成了γ-AlON(Al5O6N)、21R多型体(Al7O3N5)和16H多型体(Al8O3N6)。1 600℃烧成试样中生成的阿隆(AlON)含量较1 500℃烧成试样显著增多。在相同温度下,50wt%烧结刚玉加50wt%电熔刚玉混合细粉试样中生成的AlON含量最多,100wt%电熔刚玉细粉试样次之,100%烧结刚玉细粉试样中生成的AlON含量最少。分析了AlON的形成机制并建立了刚玉细粉与碳的反应模型。 Using phenolic resin as binding agent, samples with sintered alumina (100wt%), fused corundum (100wt%) and sintered alumina (50wt%) mixed with fused corundum (50wt%) were prepared, respectively, then the samples were sintered at 1 500℃ and 1 600℃ under flowing nitrogen, respectively. Sintered samples were characterized by XRD, SEM and EDAS. The results show that γ-AlON(Al5O6N) and 12H polytype(Al6O3N4) form in samples sintered at 1 500℃, while γ-AlON(Al5O6N), 21R polytype(Al7O3N5) and 16H polytype(Al8O3N6) form in samples sintered at 1 600℃. The content of AlON increases remarkably in samples sintered at 1 600℃ compared with samples sintered at 1 500℃. At the same sintering temperature, AlON contents in samples prepared with sintered alumina (50wt%) mixed with fused corundum (50wt%), fused corundum (100wt%) and sintered alumina (100wt%) decrease inturn. The formation mechanism of AlON was studied and the reaction model of alumina powder and carbonis was presented. 水泥回转窑炉用MgO-Al2O3-FeOx高效低成本制备关键技术研发(BE2016043)

References

[1]  CORBIN N D. Aluminum oxynitride spinel:A review[J]. Journal of the European Ceramic Society, 1989, 5(3):143-154.
[2]  ZHANG N, LIANG B, WANG X Y, et al. The pressureless sintering and mechanical properties of AlON ceramic[J]. Materials Science and Engineering:A, 2011, 528(19):6259-6262.
[3]  YAMAGUCHI G, YANAGIDA H. Study on the reductive spinel-A new spinel formula AlN-Al2O3 instead of the previous one Al3O4[J]. Bulletin of the Chemical Society of Japan, 1959, 32(11):1264-1265.
[4]  MCCAULEY J W, CORBIN N D. High temperature reactions and microstructures in the Al2O3-AlN system[M]//Progress in Nitrogen Ceramics. Netherlands:Springer, 1983:111-118.
[5]  DAIMU M. Properties of monolithic refractories used sintered alumina and fused alumina[J]. Refractory, 2016, 68(2):60-66.
[6]  MCCAULEY J W, CORBIN N D. Phase relations and reaction sintering of transparent cubic aluminum oxynitride spinel (ALON)[J]. Journal of the American Ceramic Society, 1979, 62(9-10):476-479.
[7]  BALOMENOS E, PANIAS D, PASPALIARIS I. Theoretical investigation of the volatilization phenomena occurring in the carbothermic reduction of alumina[J]. World of Metallurgy-Erzmetall, 2011, 64(6):312-320.
[8]  LIHRMANN J M. Thermodynamics of the Al2O3-Al4C3 system:Ⅲ. Equilibrium vapor pressures and activation energies for volatilization[J]. Journal of the European Ceramic Society, 2008, 28(3):649-656.
[9]  WILLEMS H X, HENDRIX M R M, METSELAAR R, et al. Thermodynamics of AlON I:Stability at lower temperatures[J]. Journal of the European ceramic society, 1992, 10(4):327-337.
[10]  LIU X J, CHEN F, ZHANG F, et al. Hard transparent AlON ceramic for visible/IR windows[J]. International Journal of Refractory Metals and Hard Materials, 2013, 39:38-43.
[11]  RAFANIELLO W, CUTLER I B. Preparation of sinterable cubic aluminum oxynitride by the carbothermal nitridation of aluminum oxide[J]. Journal of the American Ceramic Society, 1982, 13(3):128-128-c-128.
[12]  YUAN X, LIU X, ZHANG F, et al. Synthesis of γ-AlON powders by a combinational method of carbothermal reduction and solid-state reaction[J]. Journal of the American Ceramic Society, 2010, 93(1):22-24.
[13]  PASCO W D, DOREMUS B H. Carbothermic reduction of alumina Part Ⅱ:Thermochemistry. No. 82CRD111[R]. General Electric Co., 1982-03.
[14]  FRUEHAN R J, LI Y, CARKIN G. Mechanism and rate of reaction of Al2O, Al, and CO vapors with carbon[J]. Metallurgical and Materials Transactions B, 2004, 35(4):617-623.
[15]  吉练祥. 刚玉耐火材料[M]. 北京:冶金工业出版社, 1999:70-75. JI Lianxiang. Corundum refractories[M]. Beijing:Metallurgical Industry Press, 1999:70-75(in Chinese).
[16]  宋希文, 章军, 郭贵宝. Al2O3-C耐火材料的性能研究[J]. 包头钢铁学院学报, 2000, 19(2):111-114. SONG Xiwen, ZHANG Jun, GUO Guibao, et al. Study on the properties of Al2O3-C materials[J]. Journal of Baotou University of Iron and Steel Technology, 2000, 19(2):111-114(in Chinese).
[17]  MCCAULEY J W, PATEL P, CHEN M, et al. AlON:A brief history of its emergence and evolution[J]. Journal of the European Ceramic Society, 2009, 29(2):223-236.
[18]  JIN X, GAO L, SUN J, et al. Highly transparent AlON pressurelessly sintered from powder synthesized by a novel carbothermal nitridation method[J]. Journal of the American Ceramic Society, 2012, 95(9):2801-2807.
[19]  COLLONGU. R, COLIN F, THERY J. Reduction and nitridation reactions in alumina-based ceramics[J]. Bulletin de la Societe Francaise de Ceramique, 1967, 77:51.
[20]  QIN Haixia, LI Yong, JIANG Peng, et al. In-situ synthesis of AlON reinforcing phases in resin bonded Al2O3 composite materials[J]. Journal of Alloys and Compounds, 2017, 711:1-7.
[21]  LEFORT P, BILLY M. Mechanism of AlN formation through the carbothermal reduction of Al2O3 in a flowing N2 atmosphere[J]. Journal of the American Ceramic Society, 1993, 76(9):2295-2299.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133