|
- 2018
改性石墨烯/聚氯乙烯复合材料的制备及性能
|
Abstract:
采用不同含量的硅烷偶联剂γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)对石墨烯(GE)进行改性,将改性GE(KH-GE)与聚氯乙烯(PVC)进行熔融混炼制备KH-GE/PVC复合材料。通过FTIR、Raman、XRD、TEM和SEM表征改性前后GE结构变化,并考察了KH-GE/PVC复合材料的力学性能、导电性能及稳定性能。结果表明,GE∶KH570质量比为1∶2时,KH-GE的层间距较大,改善了GE的团聚,使GE在PVC基体中的分散得到了改善。随着KH-GE含量的增加,KH-GE/PVC复合材料的力学性能显著提高,当KH-GE质量分数为1.5wt%时,KH-GE/PVC复合材料的拉伸强度和断裂伸长率分别为23.98 MPa和226.78%,比未添加KH-GE的PVC复合材料分别提高了51.1%和65.73%;相对于纯PVC,当KH-GE质量分数为1.5wt%时,对应的50%热失重(T50%)及90%热失重(T90%)分别从289.81℃和486.01℃提高到298.51℃和596.53℃,提高了KH-GE/PVC复合材料的热稳定性,导电性也显著提高。 The modified graphene/polyvinyl chloride (KH-GE/PVC) composites were prepared by melting mixing of polyvinyl chloride and modified graphene. The GE was modified with different contents of silane coupling agent γ-methacryloxy propyl trimethoxy silane(KH570), the changes of graphene structure before and after modification were characterized by FTIR, Raman, XRD, TEM and SEM. And the mechanical properties, electrical conductivity and stability of KH-GE/PVC composites were also investigated. The results show that the layer spacing of KH-GE composite is larger whenW(GE:KH570) mass ratio (the total amount is 100) is 1:2. With the increase of KH-GE content, the mechanical properties of KH-GE/PVC composites are significantly improved. When the content of KH-GE is 1.5wt%, the tensile strength and elongation at break of the composite are 23.98 MPa and 226.78%, respectively, which are 51.1% and 65.73% higher than the composite without KH-GE. Comparing with pure PVC, the corresponding 50% thermal weight loss(T50%) and 90% thermal weight loss(T90%) increase from 289.81℃ to 298.51℃ and 486.01℃ to 596.53℃ when the content of KH-GE is 1.5wt%. It indicates that the thermal stability of the films are improved and the conductivity of the composites are also enhanced. 国家自然科学基金(51603117)
[1] | WANG X, WEI Y X, ZHANG P, et al. Covalent functionalization of graphene with organosilane and its use as a reinforcement in epoxy composites[J]. Composites Science and Technology, 2012, 72(6):737-743. |
[2] | CAI D, SONG M. Recent advance in functionalized graphene/polymer nanocomposites[J]. Journal of Materials Chemistry, 2010, 20(37):7906-7915. |
[3] | VERDEJO R, BERNAL M M, ROMASANTA L J, et al. Graphene filled polymer nanocomposites[J]. Journal of Materials Chemistry, 2011, 21(10):3301-3310. |
[4] | 戈明亮, 夏晶, 贾德民. 偶联剂对聚氯乙烯/粘土纳米复合材料结构与性能的影响[J]. 高分子材料科学与工程, 2008, 24(7):106-108+112. GE M L, XIA J, JIA D M. Effects of coupling agent on the properties and structures of poly(vinylchloride)/claynano-composites[J]. Polymeric Materials Science and Engineering, 2008, 24(7):106-108+112(in Chinese). |
[5] | BROZA G, PISZCZEK K, SCHULTE K, et al. Nanocomposites of poly(vinyl chloride)with carbon nanotubes(CNT)[J]. Composites Science and Technology, 2007, 67(5):890-894. |
[6] | AVINASH P, PIERRE M. Multiscale model to investigate the effect of graphene on the fracture characteristics of graphene/polymer nanocomposites[J]. Nanoscale Research Letters, 2012, 7(1):doi. org/10.1186/1556-276X-7-595. |
[7] | HU K, KULKARNI D D, CHOI I, et al. Graphene-polymer nanocomposites for structural and functional applications[J]. Progress in Polymer Science, 2014, 39(11):1934-1972. |
[8] | 李侃社, 李树良, 陈创前, 等. 类石墨烯/氯化聚乙烯-聚氯乙烯复合材料的制备与性能[J]. 复合材料学报, 2014, 31(5):1219-1227. LI K S, LI S L, CHEN C Q,et al. Preparation and property of graphene-like/chorinated polvethylene polyvinyl chloride composites[J]. Acta Materiae Compositae Sinica, 2014, 31(5):1219-1227(in Chinese). |
[9] | SUN Y, SHI G. Graphene/polymer composites for energy applications[J]. Journal of Polymer Science Part B:Polymer Physics, 2013, 51(4):231-253. |
[10] | 中国国家标准化管理委员会. 塑料和硬橡胶使用硬度计测定压痕硬度(邵氏硬度):GB/T 2411-2008[S]. 北京:中国标准出版社, 2008. Standardization Administration of the People's Republic of China. Plastics and ebonite:Determination of indentation hardness by means of a durometer (shore hardnee):GB/T 2411-2008[S]. Beijing:China Standards Press, 2008(in Chinese). |
[11] | 中国国家标准化管理委员会. 热塑性塑料熔体质量流动速率和熔体体积流动速率的测定:GB/T 3682-2000[S]. 北京:中国标准出版社, 2001. Standardization Administration of the People's Republic of China. Determination of the melt mass-flow rate (MFR) and the melt volume-flow rate (MVR) of thermoplastics:GB/T 3682-2000[S]. Beijing:China Standards Press, 2001(in Chinese). |
[12] | SUN S, LI C, ZHANG L, et al. Interfacial structures and mechanical properties of PVC composites reinforced by CaCO3 with different particle sizes and surface treatments[J]. Polymer International, 2006, 55(2):158-164. |
[13] | 程博, 齐暑华, 何栋, 等. 纳米石墨微片/聚氯乙烯复合材料的制备与性能[J]. 复合材料学报, 2012, 29(1):8-15. CHENG B, QI S H, HE D, et al. Fabrication and properties of graphite nanosheets/poly(vinyl choride) composites[J]. Acta Materiae Compositae Sinica, 2012, 29(1):8-15(in Chinese). |
[14] | WANG Y, YANG C, MAI Y W, et al. Effect of non-covalent functionalisation on thermal and mechanical properties of graphene-polymer nanocomposites[J]. Carbon, 2016, 102:311-318. |
[15] | 高源, 陈国华. 聚合物/石墨烯复合材料制备研究新进展及其产业化现状[J]. 高分子学报, 2014(10):1314-1327. GAO Y, CHEN G H. Recent progress in preparation method of the ploymer/graphene composites and it's industrialization status[J]. Acta Polymerica Sinica, 2014(10):1314-1327(in Chinese). |
[16] | 赵笛, 滕谋勇, 李玉超, 等. 聚氯乙烯/石墨烯纳米复合材料的性能研究[J]. 塑料工业, 2015, 43(5):67-71. ZHAO D, TENG M Y, LI Y C, et al. Study of poly(vinyl choride)/graphene nanocomposite[J]. China Plastics Industry, 2015, 43(5):67-71(in Chinese). |
[17] | HYUNWOO K, AHMED A A, CHRISTOPHER W. Graphene/polymer nanocomposites[J]. Macromolecules, 2015, 43(16):6515-6530. |
[18] | 马文石, 邓帮君. 纳米功能化石墨烯/室温硫化硅橡胶复合材料的制备与表征[J]. 复合材料学报, 2011, 28(4):40-45. MA W S, DENG B G. Preparation and characterization of nano functionalized graphene/room temperature vulcanized silicone rubber composites[J]. Acta Materiae Compositae Sinica, 2011, 28(4):40-45(in Chinese). |
[19] | GALPAYA D, WANG M, LIU M, et al. Recent advances in fabrication and characterization of graphene-polymer nanocomposites[J]. Graphene, 2012, 1(2):30-49. |
[20] | VADUKUMPULLY S, PAUL J, MAHANTA N, et al. Flexible conductive grapheme/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability[J]. Carbon, 2011, 49(1):198-205. |
[21] | 樊玮, 张超, 刘天西. 石墨烯/聚合物复合材料的研究进展[J]. 复合材料学报, 2013, 30(1):14-21. FAN W, ZHANG C, LIU T X. Recent progress in graphene/ploymer composites[J]. Acta Materiae Compositae Sinica, 2013, 30(1):14-21(in Chinese). |
[22] | RAMANATHAN T, ABDALA A A, STANKOVICH S, et al. Functionalized graphene sheets for polymer nanocomposites[J]. Nature Nanotechnology, 2008, 3(6):327-331. |
[23] | 傅强, 蔡俊, 傅雅琴, 等. 氧化石墨烯/丁腈橡胶-聚氯乙烯复合材料的隔声性能[J]. 复合材料学报, 2017, 34(7):1401-1407. FU Q, CAI J, FU Y J,et al, Sound insulation performance of graphene oxide/NBR-PVC composites[J]. Acta Materiae Compositae Sinica, 2017, 34(7):1401-1407(in Chinese). |
[24] | LIU F, HU N, HAN M, et al. Investigation of interfacial mechanical properties of graphene-polymer nanocomposites[J]. Molecular Simulation, 2016, 42(14):1165-1170. |