全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

高温与脱粘对复合材料蜂窝板模态特性影响的试验
Experimental investigation on the effects of the high temperature and debonding on the modal characteristics of the composite honeycomb structure

DOI: 10.13801/j.cnki.fhclxb.20170628.002

Keywords: 复合结构,蜂窝结构,热模态试验,热应力,脱粘,高温
composite structures
,honeycomb structures,thermal modal tests,thermal stress,debonding,high temperature

Full-Text   Cite this paper   Add to My Lib

Abstract:

复合材料蜂窝板是目前航空航天领域中一类非常重要的结构,但此类结构在热环境下的模态特性研究鲜有公开报道。本文针对由碳纤维增强环氧树脂基复合材料层合板和Nomex蜂窝芯层复合而成的夹层板进行了不同温度下的模态试验,在加热过程中结构面板与芯层脱离,向外凸出。损伤发生前,结构固有频率随温度升高而下降,在识别出的前7阶模态中,弯曲振型的下降幅度较大,而扭转振型的降幅较小。对损伤后的结构再次进行常温模态试验,其模态特征发生显著变化,除了固有频率的变化外,模态阻尼比明显提高,而且其中两阶模态振型的顺序发生对调。此外,本文还对该损伤形式的成因进行了分析,所得结论对用于热环境的复合材料蜂窝结构设计具有一定的指导意义。 Composite honeycomb plate is a class of important structure in the aerospace field. But it is rarely reported about the research on the modal characteristics of honeycomb structure in thermal environment. In this paper, modal tests on a plate composed by CF/epoxy laminates and Nomex honeycomb core were performed in six different temperature environments. During heating, the face sheet is debonded from the honeycomb core. Before delamination, natural frequencies of the plate decrease with the rising temperature. Among the first 7 modes, the decrease of the frequencies of bending modes is larger than that of the torsion modes. After debonding, the modal parameters of the plate at room temperature are quite different from the original structure. The modal damping ratio is significantly increased, and the order of two mode shapes is reversed. Lastly, the causes of the debonding of face sheet are analyzed and the conclusion is helpful to the structural design of composite honeycomb structures used in thermal environment. 国家自然科学基金(11372084)

References

[1]  CLARKSON B L, RANKY M F. Modal density of honeycomb plates[J]. Journal of Sound & Vibration, 1983, 91(1):103-118.
[2]  RENJI K, NAIR P S, NARAYANAN S. Modal density of composite honeycomb sandwich panels[J]. Journal of Sound & Vibration, 1996, 195(195):687-699.
[3]  ARUNKUMAR M P, PITCHAIMANI J, GANGADHARAN K V, et al. Influence of nature of core on vibro acoustic behavior of sandwich aerospace structures[J]. Aerospace Science & Technology, 2016, 56:155-167.
[4]  KIM H Y, HWANG W. Effect of debonding on natural frequencies and frequency response functions of honeycomb sandwich beams[J]. Composite Structures, 2002, 55(1):51-62.
[5]  LI Z, CROCKER M J. Effects of thickness and delamination on the damping in honeycomb-foam sandwich beams[J]. Journal of Sound & Vibration, 2006, 294(3):473-485.
[6]  MYERS D, MARTIN C, BLOSSER M. Parametric weight comparison of advanced metallic, ceramic tile, and ceramic blanket thermal protection systems:NASA/TM-2000-210289[R]. NASA Langley Technical Report Server, 2010.
[7]  ZHANG X L, YU K P, BAI Y H, et al. Thermal vibration characteristics of fiber-reinforced mullite sandwich structure with ceramic foams core[J]. Composite Structures, 2015, 131:99-106.
[8]  吴大方, 王岳武, 蒲颖, 等. 高超声速飞行器复合材料翼面结构1100℃高温环境下的热模态试验[J]. 复合材料学报, 2015, 32(2):323-331. WU D F, WANG Y W, PU Y, et al. Thermal modal tests of composite wing structure in high-temperature environments up to 1000℃ for hypersonic flight vehicles[J]. Acta Materiae Compositae Sinica, 2015, 32(2):323-331(in Chinese).
[9]  吴大方, 赵寿根, 潘兵, 等. 高速飞行器中空翼结构高温热振动特性试验研究[J]. 力学学报, 2013, 45(4):598-605. WU D F, ZHAO S G, PAN B, et al. Experimental study on high temperature thermal-vibration characteristics for hollow wing structure of high-speed flight vehicles[J]. Chinese Journal of Theoretical & Applied Mechanics, 2013, 45(4):598-605(in Chinese).
[10]  FOO C, CHAI G, SEAH L. Mechanical properties of Nomex material and Nomex honeycomb structure[J]. Composite Structures, 2007, 80(4):588-594.
[11]  ZOU Y, TONG L, STEVEN G P. vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures-A review[J]. Journal of Sound and Vibration, 2000, 230(2):357-378.
[12]  IDRISS M, MAHI A E, ASSARAR M, et al. Damping analysis in cyclic fatigue loading of sandwich beams with debonding[J]. Composites Part B:Engineering, 2013, 44(1):597-603.
[13]  LI Z, CROCKER M J. Effects of thickness and delamination on the damping in honeycomb-foam sandwich beams[J]. Journal of Sound and Vibration, 2006, 294(3):473-485.
[14]  黄帆, 陈昌亚. 热载荷蜂窝夹层板作用下固有频率预测与分析[J]. 深空探测学报, 2015(4):371-375. HUANG F, CHEN C Y. Natural frequency prediction and analysis of honeycomb sandwich plate with thermal load[J]. Journal of Deep Space Exploration, 2015(4):371-375(in Chinese).
[15]  韩敬永, 于开平, 宋海洋, 等. 整流罩声振试验蜂窝夹层板建模方法[J]. 噪声与振动控制, 2015, 35(5):65-68. HAN J Y, YU K P, SONG H Y, et al. Study on the modeling methods of honeycomb sandwich panels based on fairing vibroacoustic experiments[J]. Noise and Vibration Control, 2015, 35(5):65-68(in Chinese).
[16]  KANT T, ARORA C, VARAIYA J. Finite element transient analysis of composite and sandwich plates based on a refined theory and a mode superposition method[J]. Composite Structures, 1992, 22(2):109-120.
[17]  徐胜今, 宋宇, 王本利, 等. 正交异性蜂窝夹层板的动力学分析[J]. 复合材料学报, 1998, 15(4):74-80. XU S J, SONG Y, WANG B L, et al. Investigation of dynamic behavior of orthotropic honeycomb sandwich plates[J]. Acta Materiae Compositae Sinica, 1998, 15(4):74-80(in Chinese).
[18]  C'NAR O, ERDAL M, KAYRAN A. Accurate equivalent models of sandwich laminates with honeycomb core and composite face sheets via optimization involving modal behavior[J]. Journal of Sandwich Structures & Materials, 2015, 25(1):3989-3998.
[19]  LIU D, JIN L, SHANG X. Comparisons of equivalent and detailed models of metallic honeycomb core structures with inplane thermal conductivities[J]. Procedia Engineering, 2012, 31(16):967-972.
[20]  BOUDJEMAI A, AMRI R, MANKOUR A, et al. Modal analysis and testing of hexagonal honeycomb plates used for satellite structural design[J]. Materials & Design, 2012, 35:266-275.
[21]  徐胜今, 孔宪仁, 王本利, 等. 正交异性蜂窝夹层板动、静力学问题的等效分析方法[J]. 复合材料学报, 2000, 17(3):92-95. XU S J, KONG X R, WANG B L, et al. Method of equivalent analysis for statics and dynamics behavior of orthotropic honeycomb sandwich plates[J]. Acta Materiae Compositae Sinica, 2000, 17(3):92-95(in Chinese).
[22]  王萍萍, 罗文波, 邹经湘, 等. 碳纤维蜂窝夹层结构动特性分析[J]. 复合材料学报, 2002, 19(6):134-136. WANG P P, LUO W B, ZOU J X, et al. Dynamic analysis of the carbon fiber honeycomb sandwich structure[J]. Acta Materiae Compositae Sinica, 2002, 19(6):134-136(in Chinese).
[23]  GUJ L, SESTIERI A. Dynamic modeling of honeycomb sandwich panel[J]. Archive of Applied Mechanics, 2007, 77(11):779-793.
[24]  JIANG D, ZHANG D, FEI Q, et al. An approach on identification of equivalent properties of honeycomb core using experimental modal data[J]. Finite Elements in Analysis & Design, 2014, 90(6):84-92.
[25]  SADOWSKI T, B C J. Effective properties for sandwich plates with aluminium foil honeycomb core and polymer foam filling-Static and dynamic response[J]. Computational Materials Science, 2011, 50(4):1269-1275.
[26]  WANG B, YANG M. Damping of honeycomb sandwich beams[J]. Journal of Materials Processing Technology, 2000, 105(1-2):67-72.
[27]  万蕾, 孙璐, 李晶, 等. 蜂窝夹层结构基板脱粘问题分析[J]. 失效分析与预防, 2015, 10(1):36-40. WAN L, SUN L, LI J, et al. Debond analysis of honeycomb sandwich construction substrates[J]. Failure Analysis and Prevention, 2015, 10(1):36-40(in Chinese).
[28]  曾小苗, 罗琳胤, 邵俊欣, 等. 复合材料夹层结构蜂窝与面板脱粘研究[J]. 航空制造技术, 2015(S2):150-151. ZENG X M, LUO L Y, SHAO J X, et al. Research on honeycomb and laminate disbond in composite sandwich structure[J]. Aeronautical Manufacturing Technology, 2015(S2):150-151(in Chinese).
[29]  关世伟. 无孔蜂窝夹层结构脱粘剥离应力分析[J]. 复合材料学报, 1999, 16(3):125-129. GUAN S W. Peeling analysis of unperforated honeycomb structure[J]. Acta Materiae Compositae Sinica, 1999, 16(3):125-129(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133