全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基体中Ti元素含量对金刚石/Cu-Ti复合材料热导率的影响
Influence of minor Ti addition in matrix on the thermal conductivity of Diamond/Cu-Ti composites

DOI: 10.13801/j.cnki.fhclxb.20170612.002

Keywords: 金刚石/Cu,复合材料,Ti含量,热导率,界面,碳化物
Diamond/Cu
,composites,Ti addition,thermal conductivity,interface,carbide

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用真空热压法制备了金刚石体积分数为63%的金刚石/Cu-Ti复合材料,研究了基体中Ti含量对金刚石/Cu-Ti复合材料界面显微结构和热导率的影响。随着Ti含量的增加,金刚石/Cu-Ti复合材料热导率先增加后减小。当基体中Ti含量为1.1wt%时热导率最高,为511 W/(m·K)。Ti含量小于1.1wt%时,烧结过程中两相界面间生成的碳化物数量和面积随Ti含量的增加而增加,优化了界面结合,提高了界面结合强度,增加了界面传热通道数量,使金刚石/Cu-Ti复合材料导热性能提高。Ti含量的增加同时伴随着碳化物热阻增加和基体导热性能的恶化。过量的Ti元素使低导热性能的碳化物层厚度增加,碳化物层本身热阻增加,界面热导降低,金刚石/Cu-Ti复合材料导热性能下降。 The 63vol% Diamond/Cu-Ti composites were prepared by vacuum hot pressing. The influence of minor Ti addition on the interfacial microstructure and thermal conductivity of Diamond/Cu-Ti composites was studied. The thermal conductivity of Diamond/Cu-Ti composites first increases and then decreases with increasing Ti contents. The maximum value of 511 W/(m·K) is obtained at 1.1wt%Ti. When Ti contents are less than 1.1wt%, the number and area of carbides generated during the sintering process increase with the increase of Ti content, the interface bonding is optimized, the interface bonding strength is improved, the number of interface heat transfer channels is increased and the thermal conductivity of Diamond/Cu-Ti composites is improved. The increase of Ti content is accompanied by the increase of carbide thermal resistance and the deterioration of the thermal conductivity of the matrix. The excess Ti element increases the thickness of the carbide layer with low thermal conductivity, increases the thermal resistance of the carbide layer itself, reduces the interfacial thermal conductivity, and decreases the thermal conductivity of the Diamond/Cu-Ti composites. 国家自然科学基金(51571087)

References

[1]  KANG Q, HE X, REN S, et al. Preparation of copper-diamond composites with chromium carbide coatings on diamond particles for heat sink applications[J]. Applied Thermal Engineering, 2013, 60(1-2):423-429.
[2]  张纯, 王日初, 彭超群, 等. 表面镀钨层对金刚石/Cu复合材料热导率的影响[J]. 稀有金属材料与工程, 2016(10):2692-2696. ZHANG Chun, WANG Richu, PENG Chaoqun, et al. Effects of tungsten coating layer on thermal conductivity of diamond-copper composites[J]. Rare Metal Materials and Engineering, 2016(10):2692-2696(in Chinese).
[3]  CHU K, JIA C, GUO H, et al. Microstructure and thermal conductivity of Cu-B/diamond composites[J]. Journal of Composite Materials, 2013, 47(23):2945-2953.
[4]  KANG Q, HE X, REN S, et al. Effect of molybdenum carbide intermediate layers on thermal properties of copper-diamond composites[J]. Journal of Alloys & Compounds, 2013, 576(44):380-385.
[5]  CHU K, JIA C, GUO H, et al. On the thermal conductivity of Cu-Zr/diamond composites[J]. Materials & Design, 2013, 45(45):36-42.
[6]  SCHUBERT T, CIUPINSKI L, ZIELINSKI W, et al. Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications[J]. Scripta Materialia, 2008, 58(4):263-266.
[7]  CHE Q L, CHEN X K, JI Y Q, et al. The influence of minor titanium addition on thermal properties of diamond/copper composites via in situ reactive sintering[J]. Materials Science in Semiconductor Processing, 2015, 30:104-111.
[8]  尹法章, 郭宏, 张习敏, 等. 添加微量Ti元素对Diamond/Cu复合材料组织及性能的影响[J]. 复合材料学报, 2010, 27(3):138-143. YIN Fazhang, GUO Hong, ZHANG Ximin, et al. Effect of Ti on microstructures and properties of Diamond/Cu compo-sites[J]. Acta Materiae Compositae Sinica, 2010, 27(3):138-143(in Chinese).
[9]  GRZONKA J, KRUSZEWSKI M J, ROSINSKI M, et al. Interfacial microstructure of copper/diamond composites fabricated via a powder metallurgical route[J]. Materials Cha-racterization, 2015, 99:188-194.
[10]  CHEN H, JIA C C, LI S J, et al. Selective interfacial bonding and thermal conductivity of diamond/Cu-alloy composites prepared by HPHT technique[J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(4):364-371.
[11]  WANG H Y, TIAN J. Thermal conductivity enhancement in Cu/diamond composites with surface-roughened diamonds[J]. Applied Physics A, 2014, 116(1):265-271.
[12]  SCHUBERT T, TRINDADE B, WEIBGARBER T, et al. Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications[J]. Materials Science and Engineering A:Structural Materials Properties Microstructure and Processing, 2008, 475(1):39-44.
[13]  SINHA V, SPOWART J E. Influence of interfacial carbide layer characteristics on thermal properties of copper-diamond composites[J]. Journal of Materials Science, 2013, 48(3):1330-1341.
[14]  CHE Q L, ZHANG J J, CHEN X K, et al. Spark plasma sintering of titanium-coated diamond and copper-titanium powder to enhance thermal conductivity of diamond/copper composites[J]. Materials Science in Semiconductor Processing, 2015, 33:67-75.
[15]  杨红梅. VHP法制备Ti-Cu复合材料的界面演变与性能研究[D]. 昆明:昆明理工大学, 2012. YANG Hongmei. Study on interface evolution and properties of Ti-Cu composites prepared by VHP method[D]. Kunming:Kunming University of Science and Technology, 2012(in Chinese)
[16]  ZWEBEN C. Advances in composite materials for thermal management in electronic packaging[J]. Journal of the Minerals, Metals & Materials Society, 1998, 50(6):47-51.
[17]  ZWEBEN C J. Advances in high-performance thermal management materials:A review[J]. Journal of Advanced Materials, 2007, 39(1):3-10.
[18]  ZWEBEN C. Thermal materials solve power electronics challenges[J]. Power Electronics Technology, 2006, 32(2):40-47.
[19]  YOSHIDA K, MORIGAMI H. Thermal properties of diamond/copper composite material[J]. Microelectronics Reliability, 2004, 44(2):303-308.
[20]  LI J, ZHANG H, ZHANG Y, et al. Microstructure and thermal conductivity of Cu/diamond composites with Ti-coated diamond particles produced by gas pressure infiltration[J]. Journal of Alloys & Compounds, 2015, 647:941-946.
[21]  王青云, 沈卫平, 马明亮, 等. 镀钛金刚石/Cu复合材料的热导率[J]. 复合材料学报, 2011, 28(6):184-188. WANG Qingyun, SHEN Weiping, MA Mingliang, et al. Thermal conductivity of Ti-coated diamond/Cu composites[J]. Acta Materiae Compositae Sinica, 2011, 28(6):184-188(in Chinese).
[22]  REN S, SHEN X, GUO C, et al. Effect of coating on the microstructure and thermal conductivities of diamond-Cu composites prepared by powder metallurgy[J]. Composites Science & Technology, 2011, 71(13):1550-1555.
[23]  HE J, ZHANG H, ZHANG Y, et al. Effect of boron addition on interface microstructure and thermal conductivity of Cu/diamond composites produced by high temperature-high pressure method[J]. Physica Status Solidi, 2014, 211(3):587-594.
[24]  胡赓祥, 蔡珣, 戎咏华. 材料科学基础[M]. 3版. 上海:上海交通大学出版社, 2010, 42-49. HU Gengxiang, CAI Xun, RONG Yonghua. Fundamentals of materials science[M]. 3th ed. Shanghai:Shanghai Jiaotong University Press, 2010, 42-49(in Chinese).
[25]  BAKER H. ASM handbook volume 3-alloy phase diagrams[M]. US:ASM International, 1992.
[26]  LYNCH J F, SOINDEL R C, CHING S C, et al. Effective thermal conductivity of composites with interfacial thermal barrier resistance[J]. Journal of Composite Materials, 1987, 21(6):508-515.
[27]  XIA Yang, SONG Yueqing, LIN Chenguang, et al. Effect of carbide formers on microstructure and thermal conductivity of diamond-Cu composites for heat sink materials[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(5):1161-1166.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133