|
- 2018
基于X射线计算机断层扫描技术的重组竹湿热耦合老化评估
|
Abstract:
为了预测重组竹制品在实际使用中的寿命,基于X射线计算机断层扫描技术(X-ray computed tomography technology,X-CT),采用标准BS EN 1087-1:1995作为重组竹湿热耦合老化条件,以其CT值和老化分析指标的数学模型评估重组竹湿热耦合老化后结构强度的损失。结果表明:重组竹老化后密度、内胶合强度和CT值均小于老化前,且老化前后差异显著。随老化时间增加,其密度、内胶合强度和CT值的损失均增加,且变化趋势基本一致,在1~2 h阶段变化较大,在2.5~4.5 h阶段变化较平缓,在老化4.5 h时达到峰值;将CT值差值与密度差值拟合为线性模型,模型相关系数R2=0.9270,验证模型R2=0.9438。CT值差值与内胶合强度差值拟合为Allometric模型,模型相关系数R2=0.9488,验证模型R2=0.9439;竹材自身的植物学特征及重组竹压制工艺造成了试验数据离散及老化前后离散程度发生改变。可通过改善重组竹制备工艺提高其内部均匀性及降低老化前后离散程度变化,以提高模型预测精度。 To predict their lifespan of reconstituted bamboo products in practical use, X-ray computed tomography technology (X-CT) was employed and the standard of BS EN 1087-1:1995 was used as the hydrothermal aging condition of recombinant bamboo. The loss of structural strength was evaluated by the mathematical model of the CT value and the aging analysis indicators after hydrothermal aging of reconstituted bamboo. The results show that:the density, the internal bond strength and the CT value of recombinant bamboo are decreased after aging than before aging, and the differences are significant before and after aging. With the increasing of the aging time, the losses of the density, the internal bond strength and the CT value are increased and their changing trends are basically the same, which rapidly change in 1-2 h and gently change in 2.5-4.5 h and reach the peak at 4.5 h; the CT value difference and the density difference are fitted into linear model whose model correlation coefficient R2 and validation model R2 are 0.9270 and 0.9438, respectively, and the CT value difference and the internal bond strength difference are fitted into Allometric model whose model correlation coefficient R2 and validation model R2 are 0.9488 and 0.9439, respectively; the botanical characteristics of bamboo and the press technology of reconstituted bamboo cause the discretizing of the experimental data and the change of the discretizing before and after aging. The internal uniformity of reconstituted bamboo can be improved and the change of the discretizing before and after aging can be reduced by improving the press technology to enhance the prediction accuracy of the models.
[1] | WEI Q, LEBLON B, LA ROCQUE A. On the use of X-ray computed tomography for determining wood properties:A review[J]. Canadian Journal of Forest Research, 2011, 41:2120-2140. |
[2] | HOUNSFIELD G N. Computed medical imaging[J]. Medical Physics, 1980, 7(4):283-290. |
[3] | 孙磊, 张立同, 梅辉, 等. 2D C/SiC缺陷的无损检测与评价[J]. 复合材料学报, 2008, 25(5):85-90. SUN L, ZHANG L T, MEI H, et al. Nondestructive testing and evaluation of 2D C/SiC with defects[J]. Acta Materiae Compositae Sinica, 2008, 25(5):85-90(in Chinese). |
[4] | ESPERT A, VILAPLANA F, KARLSSON S. Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties[J]. Composites Part A:Applied Science and Manufacturing, 2004, 35(11):1267-1276. |
[5] | TAMRAKAR S, LOPEZ-ANIDO R A. Water absorption of wood polypropylene composite sheet piles and its influence on mechanical properties[J]. Construction and Building Materials, 2011, 25(10):3977-3988. |
[6] | DENT R W. A multilayer theory for gas sorption:Part I:Sorption of a single gas[J]. Textile Research Journal, 1977, 47(2):145-152. |
[7] | MORⅡ T, IKUTA N, KIYOSUMI K, et al. Weight-change analysis of the interphase in hygrothermally aged FRP:Consideration of debonding[J]. Composites Science and Techno-logy, 1997, 57(8):985-990. |
[8] | WEITSMAN Y J, GUO Y. A correlation between fluid-induced damage and anomalous fluid sorption in polymeric composites[J]. Composites Science and Technology, 2002, 62:889-908. |
[9] | 彭冠云, 江泽慧, 刘杏娥, 等. 木质地板结构与密度分布特征的CT技术检测[J]. 北京林业大学学报, 2010, 32(6):109-113. PENG G Y, JIANG Z H, LIU X E, et al. Detection of structure and density distribution of wooden floor by computed tomography[J]. Journal of Beijing Forestry University, 2010, 32(6):109-113(in Chinese). |
[10] | HERVé V, MOTHE F, FREYBURGER C, et al. Density mapping of decaying wood using X-ray computed tomography[J]. International Biodeterioration & Biodegradation, 2014, 86(1):358-363. |
[11] | SUMARDI I, ONO K, SUZUKI S. Effect of board density and layer structure on the mechanical properties of bamboo oriented strandboard[J]. Journal of Wood Science, 2007, 53(6):510-515. |
[12] | ROH J, RA J. Effect of moisture content and density on the mechanical properties of veneer-bamboo zephyr composites[J]. Forest Products Journal, 2009, 59(3):75-78. |
[13] | 左迎峰, 吴义强, 肖俊华, 等. 重组竹制备工艺对力学性能的影响[J]. 西南林业大学学报, 2016, 36(2):132-136. ZUO Y F, WU Y Q, XIAO J H, et al. Effect of preparation technology on mechanical properties of reconstituted bamboo[J]. Journal of Southwest Forestry University, 2016, 36(2):132-136(in Chinese). |
[14] | 国家质量技术监督局. 人造板及饰面人造板理化性能试验方法:GB/T 17657-1999[S]. 北京:中国标准出版社, 1999. The State Bureau of Quality and Technical Supervision. Test methods of evaluating the properties of wood-based panels and surface decorated wood-based panels:GB/T 17657-1999[S]. Beijing:Standards Press of China, 1999(in Chinese). |
[15] | HUANG P, CHANG W, ANSELL M P, et al. Density distribution profile for internodes and nodes of Phyllostachys edulis (Moso bamboo) by computer tomography scanning[J]. Construction and Building Materials, 2015, 93:197-204. |
[16] | 龙柯全. 室外耐候重组竹制备与性能研究[D]. 长沙:中南林业科技大学, 2015. LONG K Q. Study on the preparation and performance of outdoor and weathering resistance reconsolidated bamboo[D]. Changshang:Central South University of Forestry and Technology, 2015(in Chinese). |
[17] | 孟凡丹. 纤维化竹单板重组材的制造技术及性能研究[D]. 哈尔滨:东北林业大学, 2011. MENG F D. Manufacturing technology and properties of scrimber of bamboo fibrillated-veneer lumber[D]. Harbin:Northeast Forestry University, 2011(in Chinese). |
[18] | 王卿平, 刘杏娥, 张桂兰, 等. 基于X射线CT技术快速检测不同含水率状态下的毛竹密度[J]. 光谱学与光谱分析, 2016, 36(6):1899-1903. WANG Q P, LIU X E, ZHANG G L, et al. Rapidly detection for Moso bamboo density under different moisture condition based on X-CT technology[J]. Spectroscopy and Spectral Analysis, 2016, 36(6):1899-1903(in Chinese). |
[19] | British Standards Institution. Particleboards-Determination of moisture resistance-Part 1:Boil test:BS EN 1087-1[S]. London:International and Foreign Standards Publication, 1995. |
[20] | TURBELL H. Cone-beam reconstruction using filtered back projection[D]. Link?ping:Link?ping University, 2001. |
[21] | HOU Z Q, WEI Q, ZHANG S Y. Predicting density of green logs using the computed tomography technique[J]. Forest Products Journal, 2009, 59(5):53-57. |
[22] | 毛灵涛, 孙倩文, 袁则循, 等. 基于CT图像的混凝土单轴压缩裂隙与应变场分析[J]. 建筑材料学报, 2016, 19(3):449-455. MAO L T, SUN Q W, YUAN Z X, et al. Crack and strain field analysis in concrete under uniaxial compression based on CT images[J]. Journal of Building Materials, 2016, 19(3):449-455(in Chinese). |
[23] | 魏玺, 成来飞, 张立同, 等. ICVI法制备C/SiC复合材料构件的数值模拟[J]. 复合材料学报, 2006, 23(5):116-120. WEI X, CHENG L F, ZHANG L T, et al. Numerical simulation for isothermal chemical vapor infiltration of C/SiC composites component[J]. Acta Materiae Compositae Sinica, 2006, 23(5):116-120(in Chinese). |
[24] | 柳俊哲, 袁伟静, 贺智敏, 等. 碳化与氯盐复合作用下水泥浆体的微结构演变[J]. 复合材料学报, 2015, 32(5):1536-1546. LIU J Z, YUAN W J, HE Z M, et al. Microstructural evolution of cement paste under combined effect of carbonation and chloride salt[J]. Acta Materiae Compositae Sinica, 2015, 32(5):1536-1546(in Chinese). |
[25] | 黄小真. 户外竹材重组材耐老化试验方法及性能研究[D]. 南京:南京林业大学, 2009. HUANG X Z. The study on accelerated aging method and aging resistant performance of parallel bamboo strand lumber[D]. Nanjing:Nanjing Forestry University, 2009(in Chinese). |
[26] | ESPINOZA G R, HERNáNDEZ R, CONDAL A, et al. Exploration of the physical properties of internal characteristics of sugar maple logs and relationships with CT images[J]. Wood and Fiber Science, 2005, 37(4):591-604. |
[27] | CAI Z. A new method of determining moisture gradient in wood[J]. Forest Products Journal, 2008, 58(7/8):41-45. |
[28] | BERENSTEIN C, WALNUT D. Local inversion of the Radon transform in even dimensions using wavelets[R]. Maryland:Institute for Systems Research, University of Maryland, College Park, 1993-11-1. |
[29] | QU G. Inverse radon transform with one-dimensional wavelet transform[J]. Acta Mathematicae Applicatae Sinica, 2000, 16(1):70-77. |
[30] | 杨蕾, 周爱萍, 黄东升, 等. 基于VIC-3D技术的重组竹I型断裂参数确定方法[J]. 南京工业大学学报(自然科学版), 2016, 38(5):100-104. YANG L, ZHOU A P, HUANG D S, et al. Determination of mode-I fracture parameters of parallel strand bamboo based on VIC-3D technology[J]. Journal of Nanjing Tech University (Natural Science Edition), 2016, 38(5):100-104(in Chinese). |
[31] | 秦莉. 热处理对重组竹材物理力学及耐久性能影响的研究[D]. 北京:中国林业科学研究院, 2010. QIN L. Effect of thermo-treatment on physical, mechanical properties and durability of reconstituted bamboo lumber[D]. Beijing:Chinese Academy of Forestry, 2010(in Chinese). |
[32] | 张亚梅. 热处理对竹材颜色及物理力学性能影响的研究[D]. 北京:中国林业科学研究院, 2010. ZHANG Y M. Study on the effect of color and physical-mechanical properties for heat-treated bamboo[D]. Beijing:Chinese Academy of Forestry, 2010(in Chinese). |
[33] | LIU S, LIU J. New building material the development and application of recombinant bamboo[C]//Advanced Materials Research, Switzerland:Trans Tech Publications, 2013, 773:441-444. |
[34] | LIU X, ZHANG Z. Study on the design of outdoor furniture made of recombinant bamboo[C]//Applied Mechanics and Materials, Switzerland:Trans Tech Publications, 2013, 397-400:907-910. |
[35] | 付跃进, 伍艳梅. 室外用木质人造板室内加速老化法研究进展[J]. 世界林业研究, 2011, 24(4):40-44. FU Y J, WU Y M. Research progress of indoor accelerated aging method for outdoor wood-based board[J]. World Forestry Research, 2011, 24(4):40-44(in Chinese). |
[36] | 单波, 肖岩, 陈杰. 格鲁斑胶合竹耐候性能的试验研究[J]. 工业建筑, 2015, 45(4):26-32. SHAN B, XIAO Y, CHEN J. Experimental research of Glubam after artificial accelerated aging[J]. Industrial Construction, 2015, 45(4):26-32(in Chinese). |
[37] | 王卿平. 基于X射线成像技术的木竹材密度与水分检测研究[D]. 呼和浩特:内蒙古农业大学, 2016. WANG Q P. Study on density and moisture detection of wood and bamboo based on X-ray imaging technology[D]. Hohhot:Inner Mongolia Agricultural University, 2016(in Chinese). |
[38] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 人造板及饰面人造板理化性能试验方法:GB/T 17657-2013[S]. 北京:中国标准出版社, 2013. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Test methods of evaluating the properties of wood-based panels and surface decorated wood-based panels:GB/T 17657-2013[S]. Beijing:Standards Press of China, 2013(in Chinese). |
[39] | 唐连成. 丛生竹(木)重组材制造及性能研究[D]. 南京:南京林业大学, 2012. TANG L C. Study on manufacturing and properties of strand woven bamboo (wood) lumber made of sympodial species[D]. Nanjing:Nanjing Forestry University, 2012(in Chinese). |
[40] | RADON J. On the determination of functions from their integral values along certain manifolds[J]. IEEE Transactions on Medical Imaging, 1986, MI-5(4):170-176. |
[41] | CORMACK A M. Representation of a function by its line integrals, with some radiological applications[J]. Journal of Applied Physics, 1963, 34(9):2722-2727. |
[42] | FELDKAMP L A, DAVIS L C, KRESS J W. Practical cone-beam algorithm[J]. Journal of the Optical Society of America, 1984, 1(6):612-619. |
[43] | 于子绚. 竹束单板层积材制造工艺及应用性能研究[D]. 北京:中国林业科学研究院, 2012. YU Z X. Processing technology of laminated bamboo-bundle veneer lumber and its application performance[D]. Beijing:Chinese Academy of Forestry, 2012(in Chinese). |