|
- 2018
热压烧结镀Cr碳纤维/Cu复合材料的制备及热性能
|
Abstract:
采用热压法将拥有超高导热率和负热膨胀系数(CTE)的中间相沥青基短碳纤维(CFs)与Cu复合,并利用化学气相沉积技术对CFs镀Cr以改善其与Cu的结合状况,研究了所制备的镀Cr CFs/Cu复合材料的显微结构与热性能。结果表明:在制备中Cr层的大部分与CFs表层的C反应形成连续、均匀的界面薄层Cr7C3,少量的扩散于Cu基体中,使CFs与Cu之间的界面由结合极差的机械结合转化成良好的冶金结合,有效提升了复合材料的热性能。CFs含量为40vol%~55vol%时,镀Cr CFs/Cu复合材料致密度高于97.5%,平面方向上的热导率达393~419 W(mK)-1,平面方向的CTE在5.1×10-6~8.4×10-6 K-1之间。高的热导率、低的CTE以及优良的可加工性能使其成为极有潜力的电子封装材料。 The mesophase pitch-based short carbon fibers (CFs) with ultra-high thermal conductivity and negative coefficient of thermal expansion (CTE) were compounded with Cu via hot press sintering. In order to improve the bonding state between CFs and Cu, Cr was pre-coated on CFs by chemical vapor deposition technique. The microstructure and thermal properties of the Cr-coated CFs/Cu composites were studied. The results show that most of Cr coating reacts with C forming to a thin, continuous and uniform Cr7C3 interfacial layer, and small amount of them diffuses into Cu matrix during the preparation process, which causes the interface structure between CFs and Cu to change from week mechanical bonding into good metallurgical bonding. Consequently, the thermal properties of the composites are improved effectively. The Cr-coated CFs/Cu composites with 40vol%-55vol% CFs achieve the relative densities higher than 97.5%, the in-plane thermal conductivities to 393-419 W(mK)-1 and the in-plane CTE ranging of 5.1×10-6-8.4×10-6 K-1. The composites are promising materials for electronic packaging applications due to their high thermal conductivities, low CTE and good machinabilities. 河南省科技发展计划(172102210208);河南省高校科技创新团队支持计划(18IRTSTHN005);郑州市科技攻关项目(153PKJGG135);河南工程学院博士基金(D2014015)
[1] | MOORE A L, LI S. Emerging challenges and materials for thermal management of electronics[J]. Materials Today, 2014, 17(4):163-174. |
[2] | CHUNG D D L. Materials for thermal conduction[J]. Applied Thermal Engineering, 2001, 21(16):1593-1605. |
[3] | ZWEBEN C J. Advances in high-performance thermal management materials:A review[J]. Journal of Advanced Materials, 2007, 39(1):3-10. |
[4] | MIRACLE D B. Metal matrix composites:From science to technological significance[J]. Composites Science & Technology, 2005, 65(15-16):2526-2540. |
[5] | 李春林. 石墨纤维增强金属基复合材料在雷达中的应用探讨[C]//2011年机械电子学学术会议论文集. 西安:2011:257-259. LI C L. Application discussion of graphite fiber reinforced metal matrix composites in Radar[C]//Symposium of the Proceedings of the 2011 Academic Conference on Mechanical Electronics. Xi'an:2011:257-259(in Chinese). |
[6] | VEILLERE A, HEINTZ J M, CHANDRA N, et al. Influence of the interface structure on the thermo-mechanical properties of Cu-X (X=Cr or B)/carbon fiber composites[J]. Materials Research Bulletin, 2012, 47(2):375-380. |
[7] | VEILLERE A, SUNDARAMURTH A, HEINTZ J M, et al. Relationship between interphase chemistry and mechanical properties at the scale of micron in Cu-Cr/CF composite[J]. Acta Materialia, 2011, 59(4):1445-1455. |
[8] | 王青云, 沈卫平, 马明亮, 等. 镀钛金刚石/铜复合材料的热导率[J]. 复合材料学报, 2011, 28(6):184-188. WANG Q Y, SHEN W P, MA M L, et al. Thermal conductivity of Ti-coated diamond/Cu composites[J]. Acta Materiae Compositae Sinica, 2011, 28(6):184-188(in Chinese). |
[9] | CHU K, LIU Z, JIA C, et al. Thermal conductivity of SPS consolidated Cu/diamond composites with Cr-coated diamond particles[J]. Journal of Alloys & Compounds, 2010, 490(1-2):453-458. |
[10] | NIE J, JIA C, JIA X, et al. Fabrication, microstructures, and properties of copper matrix composites reinforced by molybdenum-coated carbon nanotubes[J]. Rare Metals, 2011, 30(4):401-407. |
[11] | ABYZOV A M, KIDALOV S V, SHAKHOV F M. High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application[J]. Applied Thermal Engineering, 2012, 48(15):72-80. |
[12] | ZWEBEN C. Metal-matrix composites for electronic packaging[J]. Jom the Journal of the Minerals Metals & Materials Society, 1992, 44(7):15-23. |
[13] | MOLINA J M, NARCISO J, WEBER L, et al. Thermal conductivity of Al-SiC composites with monomodal and bimodal particle size distribution[J]. Materials Science & Engineering A, 2008, 480(1-2):483-488. |
[14] | 郭宏, 王光宗, 贾成厂, 等. 高压熔渗金刚石/铜复合材料的低温导热特性[J]. 复合材料学报, 2014, 31(3):550-555. GUO H, WANG G Z, JIA C C, et al. Low-temperature heat condction characteristics of diamond/Cu composite by high pressure infiltration[J]. Acta Materiae Compositae Sinica, 2014, 31(3):550-555(in Chinese). |
[15] | 尹法章, 郭宏, 张习敏, 等. 添加微量Ti元素对Diamond/Cu复合材料组织及性能的影响[J]. 复合材料学报, 2010, 27(3):138-143. YIN F Z, GUO H, ZHANG X M, et al. Effect of Ti on microstructures and properties of Diamond/Cu composites[J]. Acta Materiae Compositae Sinica, 2010, 27(3):138-143(in Chinese). |
[16] | YOSHIDA K, MORIGAMI H. Thermal properties of diamond/copper composite material[J]. Microelectronics Reliability, 2004, 44(2):303-308. |
[17] | WEBER L, TAVANGAR R. Diamond-based metal matrix composites for thermal management:Potential and limits[J]. Advanced Materials Research, 2009, 59:111-115. |
[18] | GALLEGO N C, EDIE D D. Structure-property relationships for high thermal conductivity carbon fibers[J]. Composites Part A:Applied Science & Manufacturing, 2001, 32(8):1031-1038. |
[19] | PARKER W J, JENJIN R J, BUTLER C P, et al. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity[J]. Journal of Applied Physics, 2004, 32(9):1679-1684. |
[20] | VAHLAS C, CAUSSAT B, SERP P, et al. Principles and applications of CVD powder technology[J]. Materials Science & Engineering R:Reports, 2006, 53(1-2):1-72. |
[21] | ITATANI K, TANAKA T, DAVIES I J. Thermal properties of silicon carbide composites fabricated with chopped Tyranno?Si-Al-C fibers[J]. Journal of the European Ceramic Society, 2006, 26(4-5):703-710. |
[22] | BARCENA J, MAUDES J, COLETO J, et al. Microstructural study of vapour grown carbon nanofiber/copper composites[J]. Composites Science & Technology, 2008, 68(6):1384-1391. |
[23] | LIU L, TANG Y, ZHAO H, et al. Fabrication and properties of short carbon fibers reinforced copper matrix composites[J]. Journal of Materials Science, 2008, 43(3):974-979. |
[24] | SHEN Y L. Thermal expansion of metal-ceramic composites:a three-dimensional analysis[J]. Materials Science & Engineering A, 1998, 252(2):269-275. |
[25] | ELOMARI S, SKIBO M D, SUNDARRAGAN A, et al. Thermal expansion behavior of particulate metal-matrix composites[J]. Composites Science & Technology, 1998, 58(3-4):369-376. |
[26] | PRIETO R, MOLINA J M, NARCISO J, et al. Fabrication and properties of graphite flakes/metal composites for thermal management applications[J]. Scripta Materialia, 2008, 59(1):11-14. |