全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

纳米SiO2/聚苯硫醚和SiO2-玻璃纤维/聚苯硫醚复合材料的性能
Properties of nano SiO2/poly-phenylene sulfide and SiO2-glass fiber/poly-phenylene sulfide composites

DOI: 10.13801/j.cnki.fhclxb.20180110.001

Keywords: 热塑性复合材料,纳米SiO2,聚苯硫醚,力学性能
thermoplastic composite
,nano SiO2,polyphenylene sulfide,mechanical properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用纳米SiO2改性聚苯硫醚(PPS)树脂及玻璃纤维(GF)/PPS复合材料,探究纳米SiO2对PPS树脂及GF/PPS复合材料性能的影响规律。采用熔融共混工艺制备纳米SiO2/PPS树脂,并采用热压成型方法制备纳米SiO2-GF/PPS复合材料,利用SEM、DSC、DMA和力学测试表征不同纳米SiO2含量的SiO2/PPS和SiO2-GF/PPS复合材料。结果表明:纳米SiO2通过熔融共混工艺能够均匀分散在PPS基体中,并提高PPS结晶度和弯曲性能。添加1wt%纳米SiO2有效提高了GF/PPS复合材料的力学性能:层间剪切强度提高49.4%,弯曲强度提高30.6%,弯曲模量提高14.6%。纳米SiO2的添加可以提高GF/PPS复合材料的玻璃化转变温度,同时纳米SiO2能够改善树脂基体韧性并阻碍裂纹的扩展。 The nano SiO2/polyphenylene sulfide (PPS) and SiO2-glass fiber(GF)/PPS composite were prepared to investigate the effects of nano SiO2 on the properties of PPS and GF/PPS composites. Nano SiO2 was used to manufacture SiO2/PPS by melt blending and SiO2-GF/PPS by hot press molding, and effects were characterized by SEM, DSC, DMA and mechanical tests. The results show that the crystallinity and bending properties of PPS can be improved with nano SiO2 uniformly dispersing in the matrix by melt blending. The mechanical properties of SiO2-GF/PPS composite are significantly improved by adding 1wt% nano SiO2, the interlaminar shear strength increases by 49.4%, the flexural strength increases by 30.6%, and the flexural modulus increases by 14.6%. The addition of nano SiO2 can improve the glass transition temperature of GF/PPS composite, and the particle can also improve the toughness of resin matrix and hinder the growth of cracks.

References

[1]  BATISTA N L, OLIVIER P, BERNHART G, et al. Cor-relation between degree of crystallinity, morphology and mechanical properties of PPS/carbon fiber laminates[J]. Materials Research, 2016, 19(1):195-201.
[2]  KIM M, PARK Y B, OKOLI O I, et al. Processing, characterization, and modeling of carbon nanotube reinforced multiscale composites[J]. Composites Science & Technology, 2009, 69(3):335-342.
[3]  TSANTZALIS S, KARAPAPPAS P, VAVOULIOTIS A, et al. On the improvement of toughness of CFRPs with resin doped with CNF and PZT particles[J]. Composites Part A:Applied Science & Manufacturing, 2007, 38(4):1159-1162.
[4]  HUSSAIN M, NAKAHIRA A, NISHIJIMA S, et al. Evaluation of mechanical behavior of CFRC transverse to the fiber direction at room and cryogenic temperature[J]. Composites Part A:Applied Science & Manufacturing, 2000, 31(2):173-179.
[5]  TIMMERMAN J F, HAYES B S, SEFERIS J C. Nanoclay reinforcement effects on the cryogenic microcracking of carbon fiber/epoxy composites[J]. Composites Science & Technology, 2002, 62(9):1249-1258.
[6]  ZHANG M Q, RONG M Z, ZHANG H B, et al. Mechanical properties of low nano-silica filled high density polyethylene composites[J]. Polymer Engineering & Science, 2003, 43(2):490-500.
[7]  吴春蕾, 章明秋, 容敏智. 纳米SiO2表面接枝聚合改性及其聚丙烯基复合材料的力学性能[J]. 复合材料学报, 2002, 19(6):61-67. WU C L, ZHANG M Q, RONG M Z. Grafting polymerization onto nano silica and its effect on mechanical properties of PP composites[J]. Acta Materiae Compositae Sinica, 2002, 19(6):61-67(in Chinese).
[8]  KUO M C, HUANG J C, CHEN M. Non-isothermal crystallization kinetic behavior of alumina nanoparticle filled poly(ether ether ketone)[J]. Materials Chemistry & Physics, 2006, 99(2):258-268.
[9]  张文栓, 罗运军, 宋海香, 等. 纳米SiO2改性聚苯硫醚力学性能的研究[J]. 工程塑料应用, 2003, 31(8):4-6. ZHANG W S, LUO Y J, SONG H X, et al. Study on the mechanical property of PPS composite modified with nano-SiO2[J]. Engineering Plastics Application, 2003, 31(8):4-6(in Chinese).
[10]  MENG S, HU Z X, XING X Y, et al. Study on preparation and property of high thermal oxidation stability PPS/SiO2 fiber[J]. Materials Science Forum, 2014, 789:249-254.
[11]  FU S Y, FENG X Q, LAUKE B, et al. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites[J]. Composites Part B:Engineering, 2008, 39(6):933-961.
[12]  LUO J J, DANIEL I M. Characterization and modeling of mechanical behavior of polymer/clay nanocomposites[J]. Composites Science & Technology, 2003, 63(11):1607-1616.
[13]  JOHN N A S, BROWN J R. Flexural and interlaminar shear properties of glass-reinforced phenolic composites[J]. Composites Part A:Applied Science & Manufacturing, 1998, 29(8):939-946.
[14]  DíEZPASCUAL A M, NAFFAKH M. Inorganic nanoparticle modified poly(phenylene sulphide)/carbon fiber laminates:Thermomechanical behaviour[J]. Materials, 2013, 6(8):3171-3193.
[15]  JEON I Y, BAEK J B. Nanocomposites derived from polymers and inorganic nanoparticles[J]. Materials, 2010, 3(6):3654-3674.
[16]  范金娟, 程小全, 陶春虎. 聚合物基复合材料构件失效分析基础[M]. 北京:国防工业出版社, 2011. FAN J J, CHENG X Q, TAO C H. Failure analysis basics for polymer matrix composite components[M]. Beijing:National Defend Industry Press, 2011(in Chinese).
[17]  DíEZ A M. Development and characterization of PEEK/carbon nanotube composites[J]. Carbon, 2009, 47(13):3079-3090.
[18]  刘刚, 张代军, 张辉, 等. 纳米粒子改性环氧树脂玻璃化转变温度的研究[J]. 热固性树脂, 2009, 24(2):6-9. LIU G, ZHANG D J, ZHANG H, et al. Study on glass transition temperature of epoxy matrix modified with nano-Al2O3[J]. Thermosetting Resin, 2009, 24(2):6-9(in Chinese).
[19]  邢丽英, 包建文, 礼嵩明, 等. 先进树脂基复合材料发展现状和面临的挑战[J]. 复合材料学报, 2016, 33(7):1327-1338. XING L Y, BAO J W, LI C M, et al. Development status and facing challenge of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica, 2016, 33(7):1327-1338(in Chinese).
[20]  DíAZ J, RUBIO L. Developments to manufacture structural aeronautical parts in carbon fibre reinforced thermoplastic materials[J]. Journal of Materials Processing Technology, 2003, 143(1):342-346.
[21]  MARSH G. Next step for automotive materials[J]. Materials Today, 2003, 6(4):36-43.
[22]  BR?NDSTED P, LILHOLT H, LYSTRUP A. Composite m-eterials for wind power turbine blades[J]. Annual Review of Materials Science, 2005, 35(1):505-538.
[23]  MITSCHANG P, BLINZLER M, W?GINGER A. Processing technologies for continuous fibre reinforced thermoplastics with novel polymer blends[J]. Composites Science & Technology, 2003, 63(14):2099-2110.
[24]  MATHIJSEN D. Leading the way in thermoplastic composites[J]. Reinforced Plastics, 2016, 60(6):405-407.
[25]  VIEILLE B, ALBOUY W, CHEVALIER L, et al. About the influence of stamping on thermoplastic-based composites for aeronautical applications[J]. Composites Part B:Engineering, 2013, 45(1):821-834.
[26]  WANG X, XU D, LIU H Y, et al. Effects of thermal residual stress on interfacial properties of polyphenylene sulphide/carbon fibre (PPS/CF) composite by microbond test[J]. Journal of Materials Science, 2016, 51(1):334-343.
[27]  CAO J, CHEN L. Effect of thermal cycling on carbon fiber-reinforced PPS composites[J]. Polymer Composites, 2010, 26(5):713-716.
[28]  REYNAUD E, JOUEN T, GAUTHIER C, et al. Nanofillers in polymeric matrix:A study on silica reinforced PA6[J]. Polymer, 2001, 42(21):8759-8768.
[29]  LAI Y H, KUO M C, HUANG J C, et al. On the PEEK composites reinforced by surface-modified nano-silica[J]. Materials Science & Engineering A, 2007, 458(1):158-169.
[30]  SPRUIELL J E. A review of the measurement and development of crystallinity and its relation to properties in neat poly(phenylene sulfide) and its fiber reinforced composites:ORNL/TM-2004/304[R]. Tennessee:Oak Ridge National Laboratory, 2005.
[31]  American Society for Testing Materials. Flexural properties of unreinforced and rein-forced plastics and electrical insulating materials:ASTM D790[S]. West Conshohocken:ASTM International, 2010.
[32]  American Society for Testing Materials. Standard test method for short beam strength of polymer matrix composite materials and their laminates:ASTM D2344[S]. West Conshohocken:ASTM International, 2005.
[33]  HU X, LESSER A J. Enhanced crystallization of bisphenol-A polycarbonate by nano-scale clays in the presence of supercritical carbon dioxide[J]. Polymer, 2004, 45(7):2333-2340.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133