全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

层间纳米纤维膜对玻纤预制体渗流特性的影响
Effects of interlaminar nanofibrous membranes on permeability property of glass-fiber preform

DOI: 10.13801/j.cnki.fhclxb.20160920.004

Keywords: 纳米纤维,径向流动实验,各向异性度,部分饱和区域,渗流特性
nanofiber
,radial flow experiments,degree of anisotropy,partially saturated region,permeability pro-perty

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究层间纳米纤维膜对玻纤织物渗流特性的影响,使用超景深三维显微镜表征了纳米纤维含量对玻纤织物微观结构的影响,采用径向法测量了纳米纤维膜夹层玻纤织物预制体的渗透率,重点分析了纳米纤维含量对玻纤织物预制体渗流模式的影响。结果表明:玻璃纤维束间的毫米尺度区域被纳米纤维膜填充而离散成微米尺度区域;预制体孔隙率及渗透率值均随着纳米纤维含量的增加而减小;随着纳米纤维含量的增加,复合预制体表现出的各向异性程度逐渐减小;树脂宏观流动前沿内部分饱和区域面积比例随纳米纤维含量的增加而增大;相同纳米纤维含量预制体的部分饱和区域面积比例随注入时间的增加呈先增大后减小趋势。 In order to investigate the effect of interlaminar nanofibrous membranes on permeability property of glass fiber fabrics, the super depth of field optical microscope was employed to characterize the microstructure of glass fiber fabric with different nanofiber contents. The permeability of glass-fiber preforms incorporated with interlaminar nanofibrous membranes was measured by the radial flow experiments with emphasis on the effect of the nanofiber contents on the impregnating pattern of glass-fiber preforms. The results show that the millimeter-scale regions between glass fiber bundles are filled and discretized into micron-scale regions. Both the porosity and permeability va-lues of preforms decrease with the nanofiber contents increasing. The anisotropy extent of preform was decreased as the increase of nanofiber contents. The area fraction of partially saturated regions behind resin macroscopic front increases with the nanofiber contents increasing. The area fraction of partially saturated region of preforms with the same nanofiber contents increases firstly, and then decreases with injection time increasing. 国家自然科学基金(51403153);天津市应用基础与前沿技术(青年)项目(14JCQNJC02600);天津工业大学"研究生科技创新活动计划"(16107)

References

[1]  LIU L, LIANG Y M, XU G Y, et al. Mode I interlaminar fracture of composite laminates incorporating with ultrathin fibrous sheets[J]. Journal of Reinforced Plastics and Composites, 2008, 27(11): 1147-1162.
[2]  BINETRUY C, HILAIRE B, PABIOT J. Tow impregnation model and void formation mechanisms during RTM[J]. Journal of Composite Materials, 1998, 32(3): 223-245.
[3]  黄智彬, 李刚, 李鹏, 等.聚砜纳米纤维增韧CFRP的制备及性能[J]. 复合材料学报, 2008, 25(5): 25-32. HUANG Z B, LI G, LI P, et al. Preparation and properties of carbon fiber/epoxy composite toughened by electrospun polysulfone nanofibers[J]. Acta Materiae Compositae Sinica, 2008, 25(5): 25-32 (in Chinese).
[4]  刘玲, 黄争鸣, 董国华, 等.层间环氧纳米纤维薄膜对层合板力学性能的影响[J]. 复合材料学报, 2006, 23(3): 15-19. LIU L, HUANG Z M, DONG G H, et al. Effects of interfacial epoxy nanofibrous films on the mechanical property of composite laminates[J]. Acta Materiae Compositae Sinica, 2006, 23(3): 15-19(in Chinese).
[5]  MAGNIEZ K, DE LAVIGNE C, FOX B L. The effects of molecular weight and polymorphism on the fracture and thermo-mechanical properties of a carbon-fibre composite modified by electrospun poly (vinylidene fluoride) membranes[J]. Polymer, 2010, 51(12): 2585-2596.
[6]  YANG Y N, WANG P. Preparation and characterizations of a new PS/TiO2 hybrid membranes by sol-gel process[J]. Po-lymer, 2006, 47(8): 2683-2688.
[7]  WU N, XIA X, WEI Q F, et al. Preparation and properties of organic/inorganic hybrid nanofibres[J]. Fibres & Textiles in Eastern Europe, 2010, 18(1): 21-23.
[8]  WU N, CHEN L, WEI Q F, et al. Nanoscale three-point bending of single polymer/inorganic composite nanofiber[J]. Journal of the Textile Institute, 2012, 103(2): 154-158.
[9]  WU N, SUN Y, JIAO Y N, et al. Effect of inorganic/organic hybrid on the wettability of polymer nanofibrous membranes[J]. Journal of Engineered Fibers and Fabrics, 2013, 8(4): 1-5.
[10]  ADAMS K L, RUSSEL W B, REBENFELD L. Radial penetration of a viscous liquid into a planar anisotropic porous medium[J]. International Journal of Multiphase Flow, 1988, 14(2): 203-215.
[11]  CHAN A W, HWANG S T. Anisotropic in-plane permeability of fabric media[J]. Polymer Engineering & Science, 1991, 31(16): 1233-1239.
[12]  ROY T, PILLAI K M. Characterization of dual-scale fiber mats for unsaturated flow in liquid composite molding[J]. Polymer Composites, 2005, 26(6): 756-769.
[13]  WEITZENBOCK J R, SHENOI R A, WILSON P A. Radial flow permeability measurement Part A: Theory[J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(6): 781-796.
[14]  DE SCHOENMAKER B, VAN DER HEIJDEN S, DE BAERE I, et al. Effect of electrospun polyamide 6 nanofibres on the mechanical properties of a glass fibre/epoxy composite[J]. Polymer Testing, 2013, 32(8): 1495-1501.
[15]  KELKAR A D, MOHAN R, BOLICK R, et al. Effect of nanoparticles and nanofibers on mode I fracture toughness of fiber glass reinforced polymeric matrix composites[C]//Materials Science and Engineering B—Advanced Functional Solid-State Materials. Mat Res Soc Singapore: Elsevier Science Publishers Ltd, 2010: 85-89.
[16]  PALAZZETTI R, ZUCCHELLI A, TRENDAFILOVA I. The self-reinforcing effect of nylon 6, 6 nano-fibres on CFRP laminates subjected to low velocity impact[J]. Composite Structures, 2013, 106: 661-671.
[17]  ZHANG J, YANG T, LIN T, et al. Phase morphology of nanofibre interlayers: Critical factor for toughening carbon/epoxy composites[J]. Composites Science and Technology, 2012, 72(2): 256-262.
[18]  LIU L, HUANG Z M, HE C L, et al. Mechanical perfor-mance of laminated composites incorporated with nanofibrous membranes[J]. Materials Science and Engineering A—Structural Materials Properties Microstructure and Processing, 2006, 435: 309-317.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133