|
- 2017
Zn1-xMnxS稀磁半导体的水热法制备及其性能
|
Abstract:
以乙二胺为修饰剂,采用水热法合成了不同掺杂比例的Zn1-xMnxS(x =0,0.02,0.05,0.07)稀磁半导体材料,并通过XRD、FESEM、HRTEM、XEDS、光致发光光谱(PL) 和振动样品磁强计(VSM)对样品的晶体结构、形貌、光学性能和磁学性能进行表征。实验结果表明:本方法制备的所有样品具有结晶良好的纤锌矿结构,没有杂峰出现;样品形貌为一维的纳米棒状,分散性良好;掺杂的Mn2+以替代Zn2+的形式进入到ZnS晶格中,随着Mn掺杂量的增加晶格常数呈现收缩趋势;样品的PL光谱存在明显的紫外发光峰、蓝光发光峰和绿光发光峰,而且峰位发生蓝移;同时一定量的Mn掺杂ZnS纳米晶在室温条件下具有铁磁性。 Diluted magnetic semiconductors Zn1-xMnxS with different consistency ratios (x =0, 0.02, 0.05, 0.07) have been synthesized by hydrothermal method using ethylenediamine as a modifier. The crystal microstructure, morphology and optical and magnetic properties of the samples were characterized by XRD, FESEM, HRTEM and XEDS, photoluminescence spectra (PL) and the vibrating sample magnetometer (VSM). The experiment results show that all samples synthesized by this method possess wurtzite structure with good crystallization, and no other impurity phase appears. The morphology of the samples is one-dimensional nanorods and well dispersed. Mn2+ enters into the ZnS lattice to substitute for the lattice site of Zn2+, and the lattice constant decreases with the increase of Mn content. The PL spectra of the samples have obvious ultraviolet emission peak, blue emission peak and green emission peak, and the luminescence peak has a blue-shift. At the same time, a certain amount of Mn doped ZnS nanocrystals have ferromagnetic properties at room temperature. 国家自然科学基金(51261015);甘肃省自然科学基金(1308RJZA238)
[1] | YU K M, WALUKIEWICZ W, WU J, et al. Diluted Ⅱ-VI oxide semiconductors with multiple band gaps[J]. Physical Review Letters, 2003, 91(24): 246403. |
[2] | PEARTON S J, ABERNATHY C R, NORTON D P, et al. Advances in wide bandgap materials for semiconductor spintronics[J]. Materials Science and Engineering R: Reports, 2003, 40(4): 137-168. |
[3] | TANG J, WANG K L. Electrical spin injection and transport in semiconductor nanowires: Challenges, progress and perspectives[J]. Nanoscale, 2015, 7(10): 4325-4337. |
[4] | STEGER M, SAEEDI K, THEWALT M L W, et al. Quantum information storage for over 180 s using donor spins in a 28 Si "semiconductor vacuum"[J]. Science, 2012, 336(6086): 1280-1283. |
[5] | YAN W, LIU Q, WANG C, et al. Realizing ferromagnetic coupling in diluted magnetic semiconductor quantum dots[J]. Journal of the American Chemical Society, 2014, 136(3): 1150-1155. |
[6] | WANG Y, HERRON N. Nanometer-sized semiconductor clusters: Materials synthesis, quantum size effects, and photophysical properties[J]. The Journal of Physical Chemistry, 1991, 95(2): 525-532. |
[7] | KHANAL D R, YIM J W L, WALUKIEWICZ W, et al. Effects of quantum confinement on the doping limit of semiconductor nanowires[J]. Nano Letters, 2007, 7(5): 1186-1190. |
[8] | KHOMCHENKO V S, ROSHCHINA N N, ZAVYALOVA L V, et al. Structure and the emission and piezoelectric pro-perties of MOCVD-grown ZnS, ZnS-ZnO and ZnO films[J]. Technical Physics, 2014, 59(1): 93-101. |
[9] | KAMRAN M A, LIU R, JING L, et al. Photoluminescence and magnetic properties of Mn-doped ZnS nanobelts[J]. Nanoscience and Nanotechnology Letters, 2014, 6(8): 706-710. |
[10] | HUANG J, YANG Y, XUE S, et al. Photoluminescence and electroluminescence of ZnS: Cu nanocrystals in polymeric networks[J]. Applied Physics Letters, 1997, 70(18): 2335-2337. |
[11] | SRIVASTAVA R K, PANDEY N, MISHRA S K. Effect of Cu concentration on the photoconductivity properties of ZnS nanoparticles synthesized by co-precipitation method[J]. Materials Science in Semiconductor Processing, 2013, 16(6): 1659-1664. |
[12] | SHI J, CUI H, LIANG Z, et al. The roles of defect states in photoelectric and photocatalytic processes for Znem>xCd1-xS[J]. Energy & Environmental Science, 2011, 4(2): 466-470. |
[13] | BORSE P H, SRINIVAS D, SHINDE R F, et al. Effect of Mn2+ concentration in ZnS nanoparticles on photoluminescenceand electron-spin-resonance spectra[J]. Physical Review B, 1999, 60(12): 8659. |
[14] | JAYANTHI K, CHAWLA S, CHANDER H, et al. Structural, optical and photoluminescence properties of ZnS: Cu nanoparticle thin films as a function of dopant concentration and quantum confinement effect[J]. Crystal Research and Technology, 2007, 42(10): 976-982. |
[15] | FAIRBROTHER A, IZQUIERDO-ROCA V, FONTANé X, et al. ZnS grain size effects on near-resonant Raman scattering: Optical non-destructive grain size estimation[J]. Crystengcomm, 2014, 16(20): 4120-4125. |
[16] | REDDY D A, LIU C, VIJAYALAKSHMI R P, et al. Structural, optical and magnetic properties of Zn0.97-xAlem>xCr0.03S nanoparticles[J]. Ceramics International, 2014, 40(1): 1279-1288. |
[17] | KUMAR S, VERMA N K. Effect of Ni-doping on optical and magnetic properties of solvothermally synthesized ZnS wurtzite nanorods[J]. Journal of Materials Science: Mate-rials in Electronics, 2014, 25(2): 785-790. |
[18] | KUMAR S, VERMA N K. Structural, optical and magnetic investigations on Fe-doped ZnS nanoparticles[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(5): 2754-2759. |
[19] | KOLE A K, TIWARY C S, KUMBHAKAR P. Room temperature synthesis of Mn2+ doped ZnS d-dots and observation of tunable dual emission: Effects of doping concentration, temperature, and ultraviolet light illumination[J]. Journal of Applied Physics, 2013, 113(11): 114308. |
[20] | WANG L, SUN Y, XIE X. Structural and optical properties of Cu-doped ZnS nanoparticles formed in chitosan/sodium al-ginate multilayer films[J]. Luminescence, 2014, 29(3): 288-292. |
[21] | BYRAPPA K, ADSCHIRI T. Hydrothermal technology for nanotechnology[J]. Progress in Crystal Growth and Characterization of Materials, 2007, 53(2): 117-166. |
[22] | XU Z, LIN J. Hydrothermal synthesis, morphology control and luminescent properties of nano/microstructured rare earth oxide species[J]. Reviews in Nanoscience and Nanotechnology, 2013, 2(4): 225-246. |
[23] | DENZLER D, OLSCHEWSKI M, SATTLER K. Luminescence studies of localized gap states in colloidal ZnS nanocrystals[J]. Journal of Applied Physics, 1998, 84(5): 2841-2845. |
[24] | SAPRA S, PRAKASH A, GHANGREKAR A, et al. Emi-ssion properties of manganese-doped ZnS nanocrystals[J]. The Journal of Physical Chemistry B, 2005, 109(5): 1663-1668. |
[25] | COEY J M, VENKATESAN M, FITZGERALD C B. Donor impurity band exchange in dilute ferromagnetic oxides[J]. Nature Materials, 2005, 4(2): 173-179. |
[26] | MECABIH S, BENGUERINE K, BENOSMAN N, et al. Generalized gradient calculations of magneto-electronic pro-perties for diluted magnetic semiconductors ZnMnS and ZnMnSe[J]. Physica B: Condensed Matter, 2008, 403(19): 3452-3458. |