|
- 2018
膨胀石墨/酚醛树脂-聚乙烯醇缩丁醛复合双极板的制备与性能
|
Abstract:
采用聚乙烯醇缩丁醛(PVB)对酚醛树脂(PF)进行改性,并以膨胀石墨为第一导电填料,用模压成型法制备了新型质子交换膜燃料电池用膨胀石墨/PF-PVB复合材料双极板。研究了PVB与PF质量比、改性树脂含量及炭黑的添加对膨胀石墨/PF-PVB复合材料双极板电导率、抗弯强度等性能的影响。结果表明,当改性树脂质量分数固定为30wt%时,膨胀石墨/PF-PVB复合材料双极板在PVB:PF=0.5时表现出最佳的电导率及抗弯强度,分别为192.3 S/cm、47.25 MPa,与不添加PVB的膨胀石墨/PF复合材料双极板相比,平面内电导率和抗弯强度分别提高了12.3%、14.2%。在PVB含量固定的条件下(PVB:PF=0.5),当改性树脂的质量分数由25wt%增加至45wt%时,膨胀石墨/PF-PVB复合材料双极板的电导率下降,而抗弯强度增加。进一步添加炭黑提高膨胀石墨/PF-PVB复合材料双极板的导电性能,当改性树脂质量分数固定为45wt%时,炭黑添加量为4wt%的试样表现出最佳的平面电导率和面比电阻,分别为137 S/cm、14.4 mΩ·cm2。 A new kind of bipolar plate for proton exchange membrane fuel cell was prepared by compression molding method, using polyvinyl butyral (PVB) modified phenolic resin (PF) as binder and expanded graphite as the first conductive filler. The effects of PVB to PF mass ratio, the modified resin content and addition of carbon black on the conductivity, flexural strength of the expanded graphite/PF-PVB composite bipolar plate were also investigated. The results show that, when the mass fraction of resin is fixed at 30wt%, the expanded graphite/PF-PVB composite bipolar plate posses the highest in-plane conductivity(192.3 S/cm) and flexural strength(47.25 MPa) with the PVB:PF=0.5, which is increased by 12.3% and 14.2% respectively compared to the expanded graphite/PF composite bipolar plate samples without PVB addition. When PVB:PF=0.5, with the mass fraction of resin increase from 25wt% to 45wt%, the conductivity of the expanded graphite/PF-PVB composite bipolar plate declines while flexural strength increases. Further add carbon black to improve the conductivity of the expanded graphite/PF-PVB composite bipolar plate, when resin mass fraction at 45 wt%, the sample with 4 wt% carbon black shows the best in-plane conductivity (137 S/cm) and best area specific resistance (14.4 mΩ·cm2). 国家重点研究和发展项目(2016YFB0101310)
[1] | KIM M, LIM J W, KIM K H, et al. Bipolar plates made of carbon fabric/phenolic composite reinforced with carbon black for PEMFC[J]. Composite Structures, 2013, 96(4):569-575. |
[2] | HERMANN A, CHAUDHURI T, SPAGNOL P. Bipolar plates for PEM fuel cells:A review[J]. International Journal of Hydrogen Energy, 2005, 30(12):1297-1302. |
[3] | ANTUNES R A, OLIVEIRA M C L, ETT G, et al. Corrosion of metal bipolar plates for PEM fuel cells:A review[J]. International Journal of Hydrogen Energy, 2010, 35(8):3632-3647. |
[4] | KIM K H, LIM J W, KIM M, et al. Development of carbon fabric/graphite hybrid bipolar plate for PEMFC[J]. Composite Structures, 2013, 98(3):103-110. |
[5] | LIM J W, DAI G L. Development of composite-metal hybrid bipolar plates for PEM fuel cells[J]. International Journal of Hydrogen Energy, 2012, 37(17):12504-12512. |
[6] | YAN W, NORTHWOOD D O. An investigation into the effects of a nano-thick gold interlayer on polypyrrole coatings on 316L stainless steel for the bipolar plates of PEM fuel cells[J]. Journal of Power Sources, 2008, 175(1):40-48. |
[7] | MYUNG S T, KUMAGAI M, ASAISHI R, et al. Nanoparticle TiN-coated type 310S stainless steel as bipolar plates for polymer electrolyte membrane fuel cell[J]. Electrochemistry Communications, 2008, 10(3):480-484. |
[8] | ANTUNES R A, OLIVEIRA M C L D, ETT G, et al. Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells:A review of the main challenges to improve electrical performance[J]. Journal of Power Sources, 2011, 196(6):2945-2961. |
[9] | KANG K, PARK S, JO A, et al. Development of ultralight and thin bipolar plates using epoxy-carbon fiber prepregs and graphite composites[J]. International Journal of Hydrogen Energy, 2017, 42(3):1691-1697. |
[10] | CAGLAR B, FISCHER P, KAURANEN P, et al. Development of carbon nanotube and graphite filled polyphenylene sulfide based bipolar plates for all-vanadium redox flow batteries[J]. Journal of Power Sources, 2014, 256(256):88-95. |
[11] | CUNNINGHAM B D, BAIRD D G. Development of bipolar plates for fuel cells from graphite filled wet-lay material and a compatible thermoplastic laminate skin layer[J]. Journal of Power Sources, 2007, 168(2):418-425. |
[12] | 周书助, 尹绍峰, 谢志勇, 等. PVB改性酚醛树脂对PEMFC碳纸的影响[J]. 高科技纤维与应用, 2017, 42(2):32-36. ZHOU S Z, YIN S F, XIE Z Y, et al. Effect of PVB modified phenolic resin on properties of PEMFC carbon paper[J]. Hi-Tech Fiber & Application, 2017, 42(2):32-36(in Chinese). |
[13] | TAKAHASHI Y. Viscoelastic properties of the phenolic re-sin-polyvinyl butyral system[J]. Journal of Applied Polymer Science, 1961, 5(16):468-477. |
[14] | 朱春山, 孙保帅. 聚乙烯醇缩甲乙醛改性酚醛树脂的热稳定性研究[J]. 热固性树脂, 2010, 25(1):23-25. ZHU C S, SUN B S. Thermal-stability of phenolic resin modified with poly(vinyl formalacetal)[J]. Thermosetting Resin, 2010, 25(1):23-25(in Chinese). |
[15] | LOPEZ A M, BARRERAS F, LOZANO A, et al. Experimental study of the durability of two different coatings for aluminium-based bipolar plates used in PEM fuel cell stacks[J]. Journal of New Materials for Electrochemical Systems, 2009, 12(2):97-102. |
[16] | WANG S H, PENG J, LUI W B, et al. Performance of the gold-plated titanium bipolar plates for the light weight PEM fuel cells[J]. Journal of Power Sources, 2006, 162(1):486-491. |
[17] | JIN S, GHALI E, MORALES A T. Corrosion behavior of 316L stainless steel and Zr 75 Ti 25 bulk amorphous alloy in simulated PEMFC anode environment in a solution containing 12.5ppm H2SO4+1.8 ppm HF at 25 and 80℃[J]. Journal of Power Sources, 2006, 162(1):294-301. |
[18] | KIM M, LIM J W, KIM K H, et al. Bipolar plates made of carbon fabric/phenolic composite reinforced with carbon black for PEMFC[J]. Composite Structures, 2013, 96(4):569-575. |
[19] | 陈惠, 刘洪波, 夏笑虹, 等. 石墨/酚醛树脂复合材料双极板的制备与性能[J]. 复合材料学报, 2015, 32(3):744-755. CHEN H, LIU H B, XIA X H, et al. Preparation and pro-perties of graphite/phenolic resin composite bipolar plate[J]. Acta Materiae Compositae Sinica, 2015, 32(3):744-755(in Chinese). |
[20] | YU H N, LIM J W, SUH J D, et al. A graphite-coated carbon fiber epoxy composite bipolar plate for polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2011, 196(23):9868-9875. |
[21] | WANG H, SWEIKART M A, TURNER J A. Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2003, 115(2):243-251. |
[22] | KARA S, ARDA E, DOLASTIR F, et al. Electrical and optical percolations of polystyrene latex-multiwalled carbon nanotube composites[J]. Journal of Colloid & Interface Science, 2010, 344(2):395-401. |
[23] | LIM J W, KIM M, DAI G L. Conductive particles embedded carbon composite bipolar plates for proton exchange membrane fuel cells[J]. Composite Structures, 2014, 108(1):757-766. |