|
- 2018
Q235低碳钢表面等离子熔覆TiB2-TiC/Fe复合涂层及耐磨性
|
Abstract:
采用等离子熔覆技术,以Fe55、Ti、B4C混合粉末为原料,在Q235低碳钢表面获得了TiB2-TiC/Fe复合涂层,并分析了涂层的物相组成、组织结构,测试了显微硬度和摩擦磨损性能,探讨了其磨损机制。TiB2-TiC/Fe复合涂层的主要物相为TiB2、TiC、α-Fe,其中TiB2呈多边形和矩形,TiC则呈不规则块状;随着原始粉末中Ti、B4C含量的增加,TiB2、TiC尺寸逐渐增大,TiB2-TiC/Fe涂层与基体之间结合紧密,呈冶金结合;随着TiB2-TiC/Fe复合涂层陶瓷相含量的增加,涂层硬度和耐磨性显著提高,当陶瓷相含量增加到一定程度(35wt%)时,涂层耐磨性能有所降低,TiB2-TiC/Fe复合涂层的磨损方式主要是磨粒磨损和剥层磨损。Ti+B4C陶瓷相含量为30wt%的等离子熔覆涂层耐磨性能较好,约为Q235钢基体的7倍,当Ti+B4C含量持续增加时,TiB2、TiC尺寸增大、缺陷增多,最终使TiB2-TiC/Fe复合涂层耐磨性降低。 TiB2-TiC/Fe composite coatings were fabricated on the surface of Q235 steel via plasma cladding by used Ti, B4C, and Fe55 as precursor materials. The phase composition, structure, microhardness and friction wear resistance of TiB2-TiC/Fe coatings were analyzed, and the wear mechanism was also discussed. The results show that the TiB2-TiC/Fe composite coatings mainly consist of TiB2, TiC and α-Fe. TiB2 phase presents rectangle or multilateral shape, and TiC phase is irregular patch shape. With the increase of ceramic content in TiB2-TiC/Fe composite coatings, the sizes of TiB2 and TiC enlarge gradually and the TiB2-TiC/Fe composite coatings are closely and metallurgically combined with Q235 steel substrate. The wear resistance and hardness of TiB2-TiC/Fe composite coatings can improve with the increasing of ceramic contents in the coatings, while the wear resistance declines when ceramic content increases to some extent (35wt%) in TiB2-TiC/Fe composite coatings. The wear mechanism of TiB2-TiC/Fe composite coatings are mainly abrasive and delaminate wear. The plasma cladding coating with 30wt% ceramic content has lower wearing volume, and the wear resistance of the coating is 7 times to that of Q235 steel. When the content of Ti+B4C continues to increase, the size and defects of ceramic phase increase and the wear resistance of the coatings reduces eventually. 国家863计划项目(2015AA034404);山东省泰山学者攀登计划(tspd20161006);国家自然科学基金(51772176)
[1] | SAHASRABUDHE H, SODERLIND J, BANDYOPADHYAY A. Laser processing of in situ TiN/Ti composite coating on titanium[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 53:239-249. |
[2] | 朱禄发, 龙剑平, 刘二勇, 等. 等离子喷涂Al2O3-13%TiO2涂层的海水腐蚀磨损性能[J]. 中国表面工程, 2015, 28(6):96-103. ZHU L F, LONG J P, LIU E Y, et al. Tribocorrosion behavior of plasma sprayed Al2O3-13%TiO2 coatings in sea-water[J]. China Surface Engineering, 2015, 28(6):96-103(in Chinese). |
[3] | XUE P, MENG Q, CHEN S, et al. Tribological property of (TiC-TiB2)pNi ceramics prepared by field-activated and pressure-assisted synthesis[J]. Rare Metals, 2011, 30(1):599-603. |
[4] | LUO P, DONG S, XIE Z, et al. The effects of coating parameters on the quality of TiB2-TiC composite phase coating on the surface of Cu-Cr-Zr alloy electrode[J]. Surface & Coatings Technology, 2014, 253:132-138. |
[5] | EL-RAHMAN A M A, WEI R. A comparative study of conventional magnetron sputter deposited and plasma enhanced magnetron sputter deposited Ti-Si-C-N nanocomposite coatings[J]. Surface & Coatings Technology, 2014, 241(8):74-79. |
[6] | BARLETTA M, PEZZOLA S, PUOPOLO M, et al. Design, processing and characterization of flexible hybrid coatings:A comparative evaluation[J]. Materials & Design, 2014, 54(2):924-933. |
[7] | 闫亮, 杜凤山, 戴圣龙, 等. 微观组织对2E12铝合金疲劳裂纹扩展的影响[J]. 中国有色金属学报, 2010, 20(7):1275-1281. YAN L, DU F S, DAI S L, et al. Effect of microstructures on fatigue crack propagation in 2E12 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(7):1275-1281(in Chinese). |
[8] | ZOU B, SHEN P, CAO X, et al. The mechanism of thermal explosion (TE) synthesis of TiC-TiB2 particulate locally reinforced steel matrix composites from an Al-Ti-B4C system via a TE-casting route[J]. Materials Chemistry and Physics, 2012, 132(1):51-62. |
[9] | MASANTA M, SHARIFF S M, CHOUDHURY A R. Evaluation of modulus of elasticity, nano-hardness and fracture toughness of TiB2-TiC-Al2O3, composite coating developed by SHS and laser cladding[J]. Materials Science & Engineering A, 2011, 528(16-17):5327-5335. |
[10] | TANG J. Mechanical and tribological properties of the TiC-TiB2 composite coating deposited on 40Cr-steel by electro spark deposition[J]. Applied Surface Science, 2016, 365:202-208. |
[11] | 张艳凤, 崔洪芝, 宋晓杰, 等. SiC晶须对反应合成多孔TiB2-TiC复合材料的影响[J]. 复合材料学报, 2016, 33(4):833-840. ZHANG Y F, CUI H Z, SONG X J, et al. Effects of SiC whiskers on TiB2-TiC porous composites by reaction synthesis[J]. Acta Materiae Compositae Sinica, 2016, 33(4):833-840(in Chinese). |
[12] | RAFIEI M, SALEHI M, SHAMANIAN M. Formation mechanism of B4C-TiB2-TiC ceramic composite produced by mechanical alloying of Ti-B4C powders[J]. Advanced Powder Technology, 2014, 25(6):1754-1760. |
[13] | RAFIEI M, SALEHI M, SHAMANIAN M, et al. Preparation and oxidation behavior of B4C-Ni and B4C-TiB2-TiC-Ni composite coatings produced by an HVOF process[J]. Ceramics International, 2014, 40(8):13599-13609. |
[14] | AKHTAR F. Microstructure evolution and wear properties of in situ synthesized TiB2, and TiC reinforced steel matrix composites[J]. Journal of Alloys & Compounds, 2008, 459(1-2):491-497. |
[15] | LIANG Y, ZHAO Q, HAN Z, et al. Dry sliding friction and wear mechanism of TiC-TiB particulate locally reinforced Mn-steel matrix composite from a Cu-Ti-BC system via a self-propagating high-temperature synthesis (SHS) casting route[J]. Tribology Transactions, 2015, 58(3):567-575. |
[16] | XING Y, DENG J, ZHOU Y, et al. Fabrication and tribological properties of Al2O3/TiC ceramic with nano-textures and WS2/Zr soft-coatings[J]. Surface & Coatings Technology, 2014, 258:699-710. |
[17] | CORREA E O, ALC?NTARA N G, VALERIANO L C, et al. The effect of microstructure on abrasive wear of a Fe-Cr-C-Nb hardfacing alloy deposited by the open arc welding process[J]. Surface & Coatings Technology, 2015, 276:479-484. |
[18] | 陈莹莹, 李文戈, 吴培桂. 激光熔覆原位合成碳化钨增强铁基表面复合材料的研究[J]. 金属热处理, 2011, 36(3):64-67. CHEN Y Y, LI W G, WU P G. In situ synthesis tungsten carbide reinforced ferrous matrix surface composites by laser cladding[J]. Heat Treatment of Metals, 2011, 36(3):64-67(in Chinese). |
[19] | 丁莹, 周泽华, 王泽华, 等. 等离子熔覆技术的研究现状及展望[J]. 陶瓷学报, 2012, 33(3):405-410. DING Y, ZHOU Z H, WANG Z H, et al. Research status and prospect of plasma cladding technology[J]. Journal of Ceramics, 2012, 33(3):405-410(in Chinese). |
[20] | WANG X H, PAN X N, DU B S, et al. Production of in situ TiB2+TiC/Fe composite coating from precursor containing B4C-TiO2-Al powders by laser cladding[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(6):1689-1693. |
[21] | WANG Z T, ZHOU X H, ZHAO G G. Microstructure and formation mechanism of in-situ TiC-TiB2/Fe composite coating[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(4):831-835. |
[22] | GUO L J, WANG X B, WANG F H, et al. Modification of TiB2 Fe coating by SMAW with high carbon ferrochrome[J]. Surface Engineering, 2013, 29(8):642-645. |
[23] | HUANG X G, HUANG J, ZHAO Z M, et al. Crystal growth and fracture behavior of solidified TiC-TiB2 prepared by combustion synthesis in high-gravity field[J]. Key Engineering Materials, 2016, 680:141-146. |
[24] | ZHOU F, YANG H Y, HE L H. In situ synthesis of TiC-TiB2 reinforced Fe-based composite coating by laser cladding[J]. Applied Mechanics & Materials, 2013, 341-342:162-165. |
[25] | WANG H, SUN S, WANG D, et al. Characterization of the structure of TiB2/TiC composites prepared via mechanical alloying and subsequent pressureless sintering[J]. Powder Technology, 2012, 217(2):340-346. |
[26] | LOCCI A M, ROBERTO O, CAO G, et al. Simultaneous spark plasma synthesis and densification of TiC-TiB2 composites[J]. Journal of the American Ceramic Society, 2010, 89(3):848-855. |
[27] | FAN X, CHEN B, ZHANG M, et al. First-principles calculations on bonding characteristic and electronic property of TiC(111)/TiN(111) interface[J]. Materials & Design, 2016, 112:282-289. |
[28] | FENG X, YUE C, SONG Z, et al. Topological dirac nodal-net fermions in AlB2-type TiB2 and ZrB2[J]. Physical Review Materials, 2018, 2(1):014202. |