|
- 2017
适于可压缩多尺度流动的紧致型激波捕捉格式
|
Abstract:
摘要 针对可压缩多尺度流动数值模拟特点,研究一种五阶高分辨率紧致型激波捕捉格式——紧致重构加权基本无振荡(CRWENO)格式。该格式利用非线性权系数将低阶紧致格式加权组合以达到高阶精度。在光滑区域蜕化成具有高分辨率的五阶线性紧致格式,在间断附近则能保持计算稳定无振荡。对CRWENO格式、目前广泛使用的加权基本无振荡(WENO)格式及两格式对应的线性格式(即五阶线性迎风格式和五阶紧致格式)进行数值性能研究,评估非线性权系数对格式耗散及频谱特性的影响。使用一维、二维、三维典型算例进行数值试验,探讨线性/非线性、紧致/非紧致格式在可压缩多尺度流动模拟中的优势和不足。结果表明,CRWENO格式在强压缩性流场模拟中能够稳定地捕捉激波,其紧致特性则改善了非线性格式普遍存在的耗散过大、分辨率较差的问题,使其能够清晰捕捉多尺度流动结构。因此,该格式在可压缩多尺度流动模拟中具有较大优势。
Abstract:Aimed at compressible multiscale flow simulations, a fifth-order high-resolution compact shock capturing scheme, compact-reconstruction weighted essentially non-oscillatory (CRWENO), is studied. Nonlinear weights are used to combine lower-order compact schemes to approximate a higher-order compact scheme. The scheme becomes the fifth-order linear compact scheme in smooth regions, while preserves computational stability across discontinuities. Numerical properties were analyzed for CRWENO and weighted essentially non-oscillatory (WENO) which is widely used these days, as well as the linear schemes that they correspond to, i.e. the fifth-order upwind linear scheme and the fifth-order compact scheme. The impacts of nonlinear weights on dissipation and spectral properties are evaluated. The advancements and drawbacks of linear/nonlinear and compact/explicit schemes in compressible multiscale flow simulations are discussed by performing 1D, 2D and 3D typical numerical tests. It can be concluded that CRWENO scheme can obtain non-oscillatory results near strong discontinuous regions. Its compact characteristic improves the problems of over-dissipation and low resolution exiting in nonlinear schemes and makes it clearly resolve multiscale flow structures. In a word, CRWENO is a proper candidate for compressible multiscale flow simulations.
[1] | DEBONIS J R.Solutions of the Taylor-Green vortex problem using high resolution explicit finite difference methods:AIAA-2013-0382[R].Reston:AIAA,2013. |
[2] | BULL J R,JAMESON A.Simulation of the compressible Taylor-Green vortex using high-order flux reconstruction schemes[J].AIAA Journal,2015,53(9):2750-2761. |
[3] | DE WIART C C,HILLEWAERT K,DUPONCHEEL M,et al.Assessment of a discontinuous Galerkin method for the simulation of vortical flows at high Reynolds number[J].International Journal for Numerical Methods in Fluids,2014,74(7):469-493. |
[4] | SAMTANEY R,PULLIN D I,KOSOVIC B.Direct numerical simulation of decaying compressible turbulence and shocklet statistics[J].Physics of Fluids,2001,13(5):1415-1430. |
[5] | LELE S K.Compact finite difference schemes with spectral-like resolution[J].Journal of Computational Physics,1992,103(1):16-42. |
[6] | VAN LEER B.Towards the ultimate conservation difference scheme V:A second-order sequal to Godunov's method[J].Journal of Computational Physics,1979,32(1):101-136. |
[7] | HARTEN A.High resolution schemes for hyperbolic conservation laws[J].Journal of Computational Physics,1983,49(3):357-393. |
[8] | JIANG G S, SHU C W.Efficient Implementation of weighted ENO schemes[J].Journal of Computational Physics,1996,126(1):202-228. |
[9] | GEROLYMOS G A, SéNéCHAL D, VALLET I.Very-high-order WENO schemes[J].Journal of Computational Physics,2009,228(23):8481-8524. |
[10] | MARTIN M P,TAYLOR E M, WU M, et al.A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J].Journal of Computational Physics,2006,220(1):270-289. |
[11] | HENRICK A K,ASLAM T D,POWERS J M.Mapped weighted essentially non-oscillatory schemes:Achieving optimal order near critical points[J].Journal of Computational Physics,2005,207(2):542-567. |
[12] | ACKER F,BORGES R B D R,COSTA B.An improved WENO-Z scheme[J].Journal of Computational Physics,2016,313:726-753. |
[13] | GHOSH D,BAEDER J.Compact reconstruction schemes with weighted ENO limiting for hyperbolic conservation laws[J].SIAM Journal on Scientific Computing,2012,34(3):A1678-A1706. |
[14] | GHOSH D,MEDIDA S,BAEDER J D.Application of compact-reconstruction weighted essentially nonoscillatory schemes to compressible aerodynamic flows[J].AIAA Journal,2014,52(9):1858-1870. |
[15] | GHOSH D,CONSTANTINESCU E M,BROWN J.Efficient implementation of nonlinear compact schemes on massively parallel platforms[J].SIAM Journal on Scientific Computing,2015,37(3):C354-C383. |
[16] | PENG J,SHEN Y.Improvement of weighted compact scheme with multi-step strategy for supersonic compressible flow[J].Computers & Fluids,2015,115:243-255. |
[17] | ROE P L.Approximate Riemann solvers,parameter vectors and difference schemes[J].Journal of Computational Physics,1981,43(2):357-372. |
[18] | GOTTLIEB S,SHU C.Total variation diminishing Runge-Kutta schemes[J].Mathematics of computation of the American Mathematical Society,1998,67(221):73-85. |
[19] | 傅德薰,马延文,李新亮,等.可压缩湍流直接数值模拟[M].北京:科学出版社,2010:34-36.FU D X,MA Y W,LI X L,et al.Direct numerical simulation of the compressible turbulences[M].Beijing:Science Press,2010:34-36(in Chinese). |
[20] | FAUCONNIER D,DICK E.On the spectral and conservation properties of nonlinear discretization operators[J].Journal of Computational Physics,2011,230(12):4488-4518. |
[21] | 屈峰,阎超,于剑,等.高精度激波捕捉格式的性能分析[J].北京航空航天大学学报,2014,40(8):1085-1089.QU F,YAN C,YU J,et al.Assessment of shock capturing methods for numerical simulations of compressible turbulence with shock waves[J].Journal of Beingjing University of Aeronautics and Astronautics,2014,40(8):1085-1089(in Chinese). |
[22] | SOD G A.A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J].Journal of Computational Physics,1978,27(1):1-31. |
[23] | WOODWARD P,COLELLA P.The numerical simulation of two-dimensional fluid flow with strong shocks[J].Journal of Computational Physics,1984,54(1):115-173. |