全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

适于可压缩多尺度流动的紧致型激波捕捉格式
Compact shock capturing scheme for compressible multiscale flow

DOI: 10.13700/j.bh.1001-5965.2016.0623

Keywords: 紧致格式,加权基本无振荡(WENO)格式,激波捕捉,数值耗散,频谱特性,可压缩多尺度流动
compact scheme
,weighted essentially non-oscillatory (WENO) scheme,shock capturing,numerical dissipation,spectral property,compressible multiscale flow

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 针对可压缩多尺度流动数值模拟特点,研究一种五阶高分辨率紧致型激波捕捉格式——紧致重构加权基本无振荡(CRWENO)格式。该格式利用非线性权系数将低阶紧致格式加权组合以达到高阶精度。在光滑区域蜕化成具有高分辨率的五阶线性紧致格式,在间断附近则能保持计算稳定无振荡。对CRWENO格式、目前广泛使用的加权基本无振荡(WENO)格式及两格式对应的线性格式(即五阶线性迎风格式和五阶紧致格式)进行数值性能研究,评估非线性权系数对格式耗散及频谱特性的影响。使用一维、二维、三维典型算例进行数值试验,探讨线性/非线性、紧致/非紧致格式在可压缩多尺度流动模拟中的优势和不足。结果表明,CRWENO格式在强压缩性流场模拟中能够稳定地捕捉激波,其紧致特性则改善了非线性格式普遍存在的耗散过大、分辨率较差的问题,使其能够清晰捕捉多尺度流动结构。因此,该格式在可压缩多尺度流动模拟中具有较大优势。
Abstract:Aimed at compressible multiscale flow simulations, a fifth-order high-resolution compact shock capturing scheme, compact-reconstruction weighted essentially non-oscillatory (CRWENO), is studied. Nonlinear weights are used to combine lower-order compact schemes to approximate a higher-order compact scheme. The scheme becomes the fifth-order linear compact scheme in smooth regions, while preserves computational stability across discontinuities. Numerical properties were analyzed for CRWENO and weighted essentially non-oscillatory (WENO) which is widely used these days, as well as the linear schemes that they correspond to, i.e. the fifth-order upwind linear scheme and the fifth-order compact scheme. The impacts of nonlinear weights on dissipation and spectral properties are evaluated. The advancements and drawbacks of linear/nonlinear and compact/explicit schemes in compressible multiscale flow simulations are discussed by performing 1D, 2D and 3D typical numerical tests. It can be concluded that CRWENO scheme can obtain non-oscillatory results near strong discontinuous regions. Its compact characteristic improves the problems of over-dissipation and low resolution exiting in nonlinear schemes and makes it clearly resolve multiscale flow structures. In a word, CRWENO is a proper candidate for compressible multiscale flow simulations.

References

[1]  DEBONIS J R.Solutions of the Taylor-Green vortex problem using high resolution explicit finite difference methods:AIAA-2013-0382[R].Reston:AIAA,2013.
[2]  BULL J R,JAMESON A.Simulation of the compressible Taylor-Green vortex using high-order flux reconstruction schemes[J].AIAA Journal,2015,53(9):2750-2761.
[3]  DE WIART C C,HILLEWAERT K,DUPONCHEEL M,et al.Assessment of a discontinuous Galerkin method for the simulation of vortical flows at high Reynolds number[J].International Journal for Numerical Methods in Fluids,2014,74(7):469-493.
[4]  SAMTANEY R,PULLIN D I,KOSOVIC B.Direct numerical simulation of decaying compressible turbulence and shocklet statistics[J].Physics of Fluids,2001,13(5):1415-1430.
[5]  LELE S K.Compact finite difference schemes with spectral-like resolution[J].Journal of Computational Physics,1992,103(1):16-42.
[6]  VAN LEER B.Towards the ultimate conservation difference scheme V:A second-order sequal to Godunov's method[J].Journal of Computational Physics,1979,32(1):101-136.
[7]  HARTEN A.High resolution schemes for hyperbolic conservation laws[J].Journal of Computational Physics,1983,49(3):357-393.
[8]  JIANG G S, SHU C W.Efficient Implementation of weighted ENO schemes[J].Journal of Computational Physics,1996,126(1):202-228.
[9]  GEROLYMOS G A, SéNéCHAL D, VALLET I.Very-high-order WENO schemes[J].Journal of Computational Physics,2009,228(23):8481-8524.
[10]  MARTIN M P,TAYLOR E M, WU M, et al.A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J].Journal of Computational Physics,2006,220(1):270-289.
[11]  HENRICK A K,ASLAM T D,POWERS J M.Mapped weighted essentially non-oscillatory schemes:Achieving optimal order near critical points[J].Journal of Computational Physics,2005,207(2):542-567.
[12]  ACKER F,BORGES R B D R,COSTA B.An improved WENO-Z scheme[J].Journal of Computational Physics,2016,313:726-753.
[13]  GHOSH D,BAEDER J.Compact reconstruction schemes with weighted ENO limiting for hyperbolic conservation laws[J].SIAM Journal on Scientific Computing,2012,34(3):A1678-A1706.
[14]  GHOSH D,MEDIDA S,BAEDER J D.Application of compact-reconstruction weighted essentially nonoscillatory schemes to compressible aerodynamic flows[J].AIAA Journal,2014,52(9):1858-1870.
[15]  GHOSH D,CONSTANTINESCU E M,BROWN J.Efficient implementation of nonlinear compact schemes on massively parallel platforms[J].SIAM Journal on Scientific Computing,2015,37(3):C354-C383.
[16]  PENG J,SHEN Y.Improvement of weighted compact scheme with multi-step strategy for supersonic compressible flow[J].Computers & Fluids,2015,115:243-255.
[17]  ROE P L.Approximate Riemann solvers,parameter vectors and difference schemes[J].Journal of Computational Physics,1981,43(2):357-372.
[18]  GOTTLIEB S,SHU C.Total variation diminishing Runge-Kutta schemes[J].Mathematics of computation of the American Mathematical Society,1998,67(221):73-85.
[19]  傅德薰,马延文,李新亮,等.可压缩湍流直接数值模拟[M].北京:科学出版社,2010:34-36.FU D X,MA Y W,LI X L,et al.Direct numerical simulation of the compressible turbulences[M].Beijing:Science Press,2010:34-36(in Chinese).
[20]  FAUCONNIER D,DICK E.On the spectral and conservation properties of nonlinear discretization operators[J].Journal of Computational Physics,2011,230(12):4488-4518.
[21]  屈峰,阎超,于剑,等.高精度激波捕捉格式的性能分析[J].北京航空航天大学学报,2014,40(8):1085-1089.QU F,YAN C,YU J,et al.Assessment of shock capturing methods for numerical simulations of compressible turbulence with shock waves[J].Journal of Beingjing University of Aeronautics and Astronautics,2014,40(8):1085-1089(in Chinese).
[22]  SOD G A.A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J].Journal of Computational Physics,1978,27(1):1-31.
[23]  WOODWARD P,COLELLA P.The numerical simulation of two-dimensional fluid flow with strong shocks[J].Journal of Computational Physics,1984,54(1):115-173.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133