|
- 2017
氧在钒中基本热力学行为的第一性原理研究
|
Abstract:
摘要 钒(V)是核聚变反应堆结构材料的重要候选材料。实验表明杂质氧(O)会对V的结构和力学性能产生极大的影响。采用基于密度泛函理论的第一性原理方法研究了O在V中热力学稳定性、扩散特性以及与缺陷空位的相互作用。O在V中易于占据八面体间隙位,其溶解能为-4.942 eV。O在间隙位的最佳扩散路径为八面体间隙位→四面体间隙位→八面体间隙位,扩散激活能为1.728 eV,在此基础上对不同温度下的扩散系数在文中给出了详细分析。O在V中与空位存在很强的吸引相互作用,1个O原子和2个O原子被空位捕获时的捕获能分别为-0.484 eV和-0.510 eV。当O原子的数量超过3,其捕获能变为正值0.382 eV,因此单空位最多能够结合2个O原子,这意味着“O1-vacancy”和“O2-vacancy” 团簇在V中很容易形成。这些研究结果将对V基合金在核聚变反应堆中的最终应用具有一定的参考价值。
Abstract:Vanadium (V) is identified as a promising candidate of the structural materials in fusion reactors. Experimental results have demonstrated that the impurity oxygen (O) has great influence on the structure and mechanical properties of V. Employing a first-principles method based on the density functional theory, we study the stability and diffusion property of impurity O as well as its interaction with defect vacancy in V. O atom is energetically favorable to occupy the octahedral insterstitial site with the solution energy of -4.942 eV. The intrinsic optimal diffusion route of O in the interstitial site is octahedral insterstitial site→tetrahedral insterstitial site→octahedral insterstitial site,and the diffusion activation energy is calculated to be 1.728 eV. The diffusion coefficients of O at the different temperature are systematically analyzed. We demonstrate that there is the strong attractive interaction between O and vacancy in V. The trapping energies of one and two O atoms are-0.484 eV and -0.510 eV, respectively. With the increase of the number of O atoms, the trapping energy of the third O becomes the positive value of 0.382 eV, meaning that vacancy cannot bind the additional O atom again. Thus, one vacancy can accommodate as many as two O atoms. It is revealed that the "O1-vacancy" and "O2-vacancy" clusters are easily formed in V. The current results can provide a very useful reference for V as a candidate structural material in a fusion reactor.
[1] | LIU Y L,ZHOU H B,JIN S,et al.Effects of H on electronic structure and ideal tensile strength of W:A first-principles calculation[J].Chinese Physics Letters,2010,27(12):127101. |
[2] | LIU Y L,JIN S,ZHANG Y,et a.l Interaction between impurity nitrogen and tungsten:A first-principles investigation[J].Chinese Physics B,2012,21(1):016105. |
[3] | LIU Y L,GAO A Y,LU W,et al. Optimal electron density mechanism for hydrogen on the surface and at a vacancy in tungsten[J].Chinese Physics Letters,2012,29(7):077101. |
[4] | LIU Y L,LU W,GAO A Y,et al.First-principles investigation on diffusion behaviours of H isotopes:From W(110) surface into bulk and in bulk W[J].Chinese Physics B,2012,21(12):126103. |
[5] | LIU Y L,ZHANG Y,HONG R J,et al.Study of theoretical tensile strength of Fe by a first-principles computational tensile test[J].Chinese Physics B,2009,18(5):1923-1930. |
[6] | SMITH D L,CHUNG H M,LOOMIS B A,et al.Reference vanadium alloy V-4Cr-4Ti for fusion application[J].Journal of Nuclear Materials,1996,233-237:356-363. |
[7] | SATOU M,ABE K,KAYANO H.High-temperature deformation of modified V-Ti-Cr-Si type alloys[J].Journal of Nuclear Materials,1991,179:757-761. |
[8] | BUTTERWORTH G J,MCCARTHY K A,SMOLIK G R,et al.Safety and environmental aspects of vanadium alloys[J].Journal of Nuclear Materials,1994,212:667-672. |
[9] | KRESSE G,HAFNER J.Ab initio molecular dynamics for liquid metals[J].Physical Review B,1993,47(1):558-561. |
[10] | PERDEW J P,BURKE K,ERNZERHOF M.Generalized gradient approximation made simple[J].Physical Review Letters,1996,77:3865-3868. |
[11] | KRESSE G,JOUBERT D.From ultrasoft pseudopotentials to the projector augmented-wave method[J].Physical Review B,1999,59(3):1758-1775. |
[12] | KITTEL C.Introduction to solid state physics[M].7th ed.New York:Wiley,1996:23. |
[13] | WERT C,ZENER C.Interstitial atomic diffusion coefficients[J].Physical Review,1949,76(8):1169-1175. |
[14] | KRESSE G,FURTHMVLLER J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J].Physical Review B,1996,54(16):11169-11186. |
[15] | MONKHORST H J,PACK J D.Special points for Brillouin-zone integrations[J].Physical Review B,1976,13(12):5188-5192. |
[16] | HOGLUND L,AGREN J.Simulation of carbon diffusion in steel driven by a temperature gradient[J].Journal of Phase Equilibria and Diffusion,2010,31(3):212-215. |
[17] | HENKELMAN G.A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J].Journal of Chemical Physics,2000,113(22):9901-9904. |
[18] | FUKAI Y,ōKUMA N.Formation of superabundant vacancies in Pd hydride under high hydrogen pressures[J].Physical Review Letters,1994,73(12):1640-1643. |
[19] | LU G,KAXIRAS E.Hydrogen embrittlement of aluminum:The crucial role of vacancies[J].Physical Review Letters,2005,94(15):155501. |
[20] | GAVINI V,BHATTACHARYA K,ORTIZ M.Vacancy clustering and prismatic dislocation loop formation in aluminum[J].Physical Review B,2007, 76(18):180101. |
[21] | DISTEFANO J R,DEVAN J H.Reactions of oxygen with V-Cr-Ti alloys[J].Journal of Nuclear Materials,1997,249:150-158. |
[22] | HAUTOJARVI P,JOHANSSON J,VEHANEN A.Vacancy-carbon interaction in iron[J].Physical Review Letters,1980,44(20):1326-1329. |
[23] | CHUNG H M,LOOMIS B A,SMITH D L.Development and testing of vanadium alloys for fusion applications[J].Journal of Nuclear Materials,1996,239:139-156. |
[24] | SATO S,TANAKA T,HORI J,et al.Radioactivity of the vanadium-alloy induced by D-T neutron irradiation[J].Journal of Nuclear Materials,2004,329:1648-1652. |
[25] | MARKOVSKIJ D V,FORREST R A,KOVALCHUK V D,et al.Experimental activation study of some Russian vanadium alloys with 14-MeV neutrons at SNEG-13 facility[J].Fusion Engineering and Design,2001,58:591-594. |
[26] | BLOOM E E,CONN R W,DAVIS J W,et al.Low activation materials for fusion applications[J].Journal of Nuclear Materials,1984,122(1):17-26. |
[27] | TSAI H,BRAY T S,MATSUI H,et al.Effects of low-temperature neutron irradiation on mechanical properties of vanadium-base alloys[J].Journal of Nuclear Materials,2000,283:362-366. |
[28] | LOOMIS B A,SMITH D L,GARNER F A.Swelling of neutron-irradiated vanadium alloys[J].Journal of Nuclear Materials,1991,179:771-774. |
[29] | OHNUKI S,TAKAHASHI H,KINOSHITA H,et al.Void formation and precipitation in neutron irradiated vanadium alloys[J].Journal of Nuclear Materials,1988,155:935-939. |
[30] | LOOMIS B A,SMITH D L.Vanadium alloys for structural applications in fusion systems:A review of vanadium alloy mechanical and physical properties[J].Journal of Nuclear Materials,1992,191:84-91. |
[31] | BORGSTEDT H U,GRUNDMANN M,KONYS J,et al.A vanadium alloy for the application in a liquid metal blanket of a fusion reactor[J].Journal of Nuclear Materials,1988,155:690-693. |
[32] | BORGSTEDT H U,FEUERSTEIN H.The solubility of metals in Pb-17Li liquid alloy[J].Journal of Nuclear Materials,1992,191:988-991. |
[33] | SMITH D L,CHUNG H M,LOOMIS B A,et al.Development of vanadium-base alloys for fusion first-wall—Blanket applications[J].Fusion Engineering and Design,1995,29:399-410. |
[34] | LOOMIS B A,HULL A B,SMITH D L.Evaluation of low-activation vanadium alloys for use as structural material in fusion reactors[J].Journal of Nuclear Materials,1991,179:148-154. |
[35] | SATO T,OKITA T,SEKIMURA N.Effects of solid transmutation and helium on microstructural evolution in neutron-irradiated vanadium[J].Journal of Nuclear Materials,2002,307:385-388. |
[36] | 谌继明,室贺健夫,许增裕,等.聚变应用钒合金抗氢脆性能的合金化设计[J].金属学报,2002,38(8):839-843.CHEN J M,MUROGA T,XU Z Y,et al.Alloying design for fusion application vanadium alloys based on hydrogen embrittlement resistance[J].Acta Metallurgica Sinica,2002,38(8):839-843(in Chinese). |
[37] | 吴仲成,彭述明,杨茂年,等.有效介质理论计算He原子在金属钒中的扩散行为[J].金属学报,2004,40(1):36-39.WU Z C,PENG S M,YANG M N,et al.Calculation of diffusion barriers for helium atom in vanadium by effective medium theory[J].Acta Metallurgica Sinica,2004,40(1):36-39(in Chinese). |
[38] | ZHANG P B,ZHAO J J,QIN Y,et al.Stability and dissolution of helium-vacancy complexes in vanadium solid[J].Journal of Nuclear Materials,2011,419:1-8. |
[39] | ZHANG P B,ZHAO J J,QIN Y,et al Stability and migration property of helium and self defects in vanadium and V-4Cr-4Ti alloy by first-principles[J].Journal of Nuclear Materials,2011,413:90-94. |
[40] | KURTZ R J,ABE K,CHERNOV V M,et al.Recent progress on development of vanadium alloys for fusion[J].Journal of Nuclear Materials,2004,329:47-55. |
[41] | ALKHAMEES A,ZHOU H B,LIU Y L,et al.First-principles investigation on dissolution and diffusion of oxygen in tungsten [J].Journal of Nuclear Materials,2009,393:508-512. |
[42] | ALKHAMEES A,ZHOU H B,LIU Y L,et al.Vacancy trapping behaviors of oxygen in tungsten:A first-principles study[J].Journal of Nuclear Materials,2013,437:6-10. |