全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于L1/2范数正则化的塑性回声状态网络故障诊断模型
A fault diagnosis model of plasticity echo state network based on L1/2-norm regularization

DOI: 10.13700/j.bh.1001-5965.2017.0214

Keywords: 储备池,回声状态网络(ESN),BCM规则,L1/2范数正则化,半阈值迭代法,故障诊断
reservoir
,echo state network (ESN),BCM rule,L1/2-norm regularization,half threshold iteration method,fault diagnosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 为了提升储备池的动态适应性能,克服回声状态网络(ESN)输出权值求解的病态不适定问题,平衡其拟合与泛化能力,提出了一种基于L1/2范数正则化的塑性回声状态网络故障诊断模型。在储备池构建中引入BCM规则对连接权矩阵进行预训练,并在目标函数中添加L1/2范数惩罚项以提高稀疏化效率,利用一个光滑化的L1/2正则子克服迭代数值振荡问题,并采用半阈值迭代法对模型进行求解。将模型应用于机载电台的故障诊断问题中,仿真结果证明了模型的有效性和优越性。
Abstract:In order to improve the dynamic adaptability of reservoir, overcome the ill-posed problems of output weights in echo state network (ESN), and balance the fitting and generalization ability, a fault diagnosis model of plasticity echo state network based on L1/2-norm regularization is presented. BCM rule was introduced into the reservoir construction to train the connection weight matrix. Meanwhile, the L1/2-norm penalty term was added to the objective function in order to improve the sparsification efficiency. An iterative numerical oscillation problem was solved by using a smoothing L1/2 regularizer, and finally the model was solved by using the half threshold iteration method. The model is applied to the fault diagnosis of airborne radio station, and the simulation results prove the validity and superiority of the model.

References

[1]  DUTOIT X,SCHRAUWEN B,VAN CAMPENHOUT J,et al.Pruning and regularization in reservoir computing[J].Neurocomputing,2009,72(7):1534-1546.
[2]  CHINE W,MELLIT A,LUGHI V,et al.A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks[J].Renewable Energy,2016,90:501-512.
[3]  UNAL M,ONAT M,DEMETGUL M,et al.Fault diagnosis of rolling bearings using a genetic algorithm optimized neural network[J].Measurement,2014,58:187-196.
[4]  SHATNAWI Y,AL-KHASSAWENEH M.Fault diagnosis in internal combustion engines using extension neural network[J].IEEE Transactions on Industrial Electronics,2014,61(3):1434-1443.
[5]  JAEGER H.The "echo state" approach to analysing and training recurrent neural networks-with an erratum note[R].Bonn:German National Research Center for Information Technology GMD Technical Report,2001.
[6]  LUN S X,YAO X S,QI H Y,et al.A novel model of leaky integrator echo state network for time-series prediction[J].Neurocomputing,2015,159:58-66.
[7]  VARSHNEY S,VERMA T.Half hourly electricity load prediction using echo state network[J].International Journal of Science and Research,2014,3(6):885-888.
[8]  MORANDO S,JEMEI S,HISSEL D,et al.ANOVA method applied to proton exchange membrane fuel cell ageing forecasting using an echo state network[J].Mathematics and Computers in Simulation,2017,131:283-294.
[9]  许美玲,韩敏.多元混沌时间序列的因子回声状态网络预测模型[J].自动化学报,2015,41(5):1042-1046.XU M L,HAN M.The model of factor echo state network prediction for multivariate chaotic time series[J].Acta Automatica Sinica,2015,41(5):1042-1046(in Chinese).
[10]  郭嘉,雷苗,彭喜元.基于相应簇回声状态网络静态分类方法[J].电子学报,2011,39(3A):14-18.GUO J,LEI M,PENG X Y.Static classification method based on corresponding cluster echo state network[J].Acta Sinica,2011,39(3A):14-18(in Chinese).
[11]  SCARDAPANE S,UNCINI A.Semi-supervised echo state networks for audio classification[J].Cognitive Computation,2017,9(1):125-135.
[12]  SONG Q S,FENG Z R.Effects of connectivity structure of complex echo state network on its prediction performance for nonlinear time series[J].Neurocomputing,2010,73(10-12):2177-2185.
[13]  MARTIN C E,REGGIA J A.Fusing swarm intelligence and self-assembly for optimizing echo state networks[J].Computational Intelligence and Neuroscience,2015,2015(5-6):642429.
[14]  XU Z,CHANG X,XU F,et al.<em>L</em><sub>1/2</sub> regularization:A thresholding representation theory and a fast solver[J].IEEE Transactions on Neural Networks and Learning Systems,2012,23(7):1013-1027.
[15]  ZENG J,LIN S,WANG Y,et al.<em>L</em><sub>1/2</sub> regularization:Convergence of iterative half thresholding algorithm[J].IEEE Transactions on Signal Processing,2014,62(9):2317-2329.
[16]  KUMP P,BAI E W,CHAN K,et al.Variable selection via RIVAL(removing irrelevant variables amidst Lasso iterations) and its application to nuclear material detection[J].Automatica,2012,48(9):2107-2115.
[17]  SHI Z,HAN M.Support vector echo-state machine for chaotic time-series prediction[J].IEEE Transactions on Neural Networks,2007,18(2):359-372.
[18]  刘建伟,李双成,罗雄麟.p范数正则化支持向量机分类算法[J].自动化学报,2012,38(1):76-87.LIU J W,LI S C,LUO X L.Classification algorithm of support vector machine via p-norm regularization[J].Acta Automatica Sinica,2012,38(1):76-87(in Chinese).
[19]  韩敏,李德才.基于替代函数及贝叶斯框架的1范数ELM算法[J].自动化学报,2011,37(11):1344-1350.HAN M,LI D C.An norm 1 regularization term ELM algorithm based on surrogate function and Bayesian framework[J].Acta Automatica Sinica,2011,37(11):1344-1350(in Chinese).
[20]  ZOU H,HASTIE T.Regularization and variable selection via the elastic net[J].Journal of the Royal Statistical Society,2005,67(2):301-320.
[21]  LUKO?EVIGIUS M,JAEGER H.Reservoir computing approaches to recurrent neural network training[J].Computer Science Review,2009,3(3):127-149.
[22]  CASTELLANI G C,INTRATOR N,SHOUVAL H,et al.Solutions of the BCM learning rule in a network of lateral interacting nonlinear neurons[J].Network:Computation in Neural Systems,1999,10(2):111-121.
[23]  LEFORT M,BONIFACE Y,GIRAU B.Self-organization of neural maps using a modulated BCM rule within a multimodal architecture[C]//Brain Inspired Cognitive Systems 2010.Berlin:Springer,2010:26-38.
[24]  TIBSHIRANI R.Regression shrinkage and selection via the lasso[J].Journal of the Royal Statistical Society,1996,58(1):267-288.
[25]  彭义刚,索津莉,戴琼海,等.从压缩传感到低秩矩阵恢复:理论与应用[J].自动化学报,2013,39(7):981-994.PENG Y G,SUO J L,DAI Q H,et al.From compressed sensing to low-rank matrix recovery:Theory and applications[J].Acta Automatica Sinica,2013,39(7):981-994(in Chinese).
[26]  ZOU H.The adaptive lasso and its oracle properties[J].Journal of the American Statistical Association,2006,101(476):1418-1429.
[27]  XU Z,ZHANG H,WANG Y,et al.L 1/2 regularization[J].Science China Information Sciences,2010,53(6):1159-1169.
[28]  DAUBECHIES I,DEVORE R,FORNASIER M,et al.Iteratively reweighted least squares minimization for sparse recovery[J].Communications on Pure and Applied Mathematics,2010,63(1):1-38.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133