全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

基于简单WENO-间断Galerkin的Euler方程自适应计算
Adaptive simple WENO limiter-discontinuous Galerkin method for Euler equations

DOI: 10.13700/j.bh.1001-5965.2015.0237

Keywords: 间断Galerkin方法,简单WENO限制器,Euler方程,自适应计算,曲边四边形单元
discontinuous Galerkin method
,simple WENO limiter,Euler equations,adaptive computation,curvilinear boundary quadrilateral element

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 为了得到Euler方程的高精度、高分辨率数值解,介绍了间断Galerkin方法、三角形单元上简单WENO限制器的基本原理以及基于自适应网格加密的激波捕捉方法。将简单WENO限制器-间断Galerkin方法应用到曲边四边形单元上,通过单元边界上高斯积分点的坐标来搜索相邻单元从而得到相邻单元的单元编号,实现了基于“问题单元”的局部网格加密自适应计算。对若干典型问题进行编程计算,结果表明,简单WENO限制器可以应用到曲边四边形单元上,且可适用于局部网格加密时具有“悬挂节点”的非结构网格上的激波捕捉。
Abstract:To achieve high precision and high resolution numerical result of Euler equations, the basic principle of discontinuous Galerkin method, the simple WENO limiter on triangular meshes and shock capturing method based on adaptive mesh refinement were introduced. The simple WENO limiter-discontinuous Galerkin method was applied to the curved quadrilateral element, and the adjacent elements of every element with the same coordinates of the Gauss integral points on the boundaries were found. The adaptive computation based on “trouble element” refinement was accomplished. Several benchmark test cases were computed. The numerical results show that the simple WENO limiter is appropriate for the curvilinear boundary quadrilateral element and for the shock capturing based on unstructured grids with hanging nodes.

References

[1]  SHU C W. A brief survey on discontinuous Galerkin methods in computational fluid dynamics[J].力学进展,2013,43(6):541-553. SHU C W.A brief survey on discontinuous Galerkin methods in computational fluid dynamics[J].Advances in Mechanics,2013,43(6):541-553(in Chinese).
[2]  ZHONG X, SHU C W.A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods[J].Journal of Computational Physics,2013,232(1):397-415.
[3]  REED W H, HILL T R.Triangular mesh methods for the neutron transport equation:LA-UR-73-479[R].Los Alamos:Scientific Laboratory,1973.
[4]  COCKBURN B, SHU C W.The local discontinuous Galerkin method for time-dependent convection diffusion systems[J].SIAM Journal on Numerical Analysis,1998,35(6):2440- 2463.
[5]  BISWAS R, DEVINE K D,FLAHERTY J.Parallel,adaptive finite element methods for conservation laws[J].Applied Numerical Mathematics,1994,14(s1-3):255-283.
[6]  COCKBURN B, SHU C W.The Runge-Kutta discontinuous Galerkin method for conservation laws V:Multidimensional systems[J].Journal of Computational Physics,1998,141(2):199-224.
[7]  BASSI F, REBAY S.A high order accurate discontinuous finite element method for the numerical solution of the compressible Navier Stokes equations[J].Journal of Computational Physics,1997,131(2):267-279.
[8]  RIDER W J, MARGOLIN L G.Simple modifications of monotonicity preserving limiters[J].Journal of Computational Physics,2001,174(1):473-488.
[9]  QIU J X, SHU C W.Runge-Kutta discontinuous Galerkin method using WENO limiters[J].SIAM Journal on Scientific Computing,2005,26(3):907-929.
[10]  ADJERID S, DEVINE K,FLAHERTY J,et al.A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems[J].Computer Methods in Applied Mechanics and Engineering, 2002,191(11-12):1097-1112.
[11]  张来平,刘伟, 贺立新,等.一种新的间断侦测器及其在DGM中的应用[J].空气动力学学报,2011,29(4):401-406. ZHANG L P,LIU W,HE L X,et al.A shock detection method and applications in DGM for hyperbolic conservation laws on unstructured grids[J].Acta Aerodynamica Sinica,2011,29(4): 401-406(in Chinese).
[12]  COCKBURN B, KARNIADAKIS G,SHU C W.The development of discontinuous Galerkin methods[M]//COCKBURN B,KARNIADAKIS G,SHU C W.Discontinuous Galerkin methods:Theory,computation and applications.New York:Springer,2000:1-50.
[13]  COCKBURN B, SHU C W.TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II:General framework[J].Mathematics of Computation,1989,52(186):411-435.
[14]  BURBEAU A, SAGAUT P,BRUNEAU C H.A problem independent limiter for high order Runge Kutta discontinuous Galerkin methods[J].Journal of Computational Physics,2001,169(1): 111-150.
[15]  SURESH A, HUYNH H T.Accurate monotonicity preserving schemes with Runge Kutta time stepping[J].Journal of Computational Physics,1997,136(1):83-99.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133