全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

动态系统失效的不确定性分析及其高效算法
Uncertainty analysis of failure of dynamic system and its efficient algorithm

DOI: 10.13700/j.bh.1001-5965.2016.0533

Keywords: 系统可靠性,系统失效预测分析,重要性测度,极大熵,乘法降维
system reliability
,system failure prediction analysis,importance measure,maximum entropy,multiplication dimensionality reduction

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 为了分析在不确定性元器件失效率影响条件下动态系统的失效问题,提出了满足工作时间要求的系统失效概率和满足失效概率限制的系统正常工作时间的分析方法。同时,为了研究元器件失效率对动态系统失效的影响程度,提出了元器件失效率对系统失效概率以及系统正常工作时间不确定性影响的重要性分析方法,建立了元器件失效率对系统失效概率和系统正常工作时间方差贡献的重要性测度指标。首先给出了指标求解的直接蒙特卡罗方法,然后采用基于分数矩的极大熵方法来高效估计系统失效的概率密度函数,采用乘法降维积分建立了2种重要性测度指标的高效解法。阀门控制系统和民用飞机电液舵机系统的算例结果表明所提方法的合理性和算法的高效性。
Abstract:In order to study the failure of dynamic system when the failure rates of components are uncertain, a new method is proposed to analyze the system failure probability when function time is given and function time when the threshold of failure probability is shown in system. Meanwhile, a new importance measure technique is developed to estimate the impact of components' failure rates on system failure probability and function time in dynamic system. In this paper, the Monte Carlo procedure is given to solve the proposed indices. The fractional moments-based maximum entropy method is used to obtain failure probability density function in system efficiently. An efficient technique with multiplication dimensionality reduction is developed to estimate two importance measure indices. Valve control system and civil aircraft electro-hydraulic actuator system are presented to illustrate the rationality and efficiency of the proposed method.

References

[1]  DENG J,PANDEY M D.Estimation of the maximum entropy quantile function using fractional probability weighted moments.Structural Safety,2008,30(4):307-319.
[2]  PARRY G W,WINTER P W.Characterization and evaluation of uncertainty in probabilistic risk analysis.Nuclear Safety,1981,22(1):251-263.
[3]  HOFFMAN F O,HAMMONDS J S.Propagation of uncertainty in risk assessments:The need to distinguish between uncertainty due to lack of knowledge and uncertainty due to variability.Risk Analysis,1994,14(5):707-712.
[4]  ELDRED M S,SWILER L P,TANG G.Mixed aleatory-epistemic uncertainty quantification with stochastic expansions and optimization-based interval estimation .Reliability Engineering & System Safety,2011,96(9):1092-1113.
[5]  KELLY E J,CAMPBELL K.Separating variability and uncertainty in environmental risk assessment—Making choices.Human and Ecological Risk Assessment,2000,6(1):1-13.
[6]  BARALDI P,ZIO E,COMPARE M.A method for ranking components importance in presence of epistemic uncertainties.Journal of Loss Prevention in the Process Industries,2009,22(5):582-592.
[7]  ZAFIROPOULO E P,DIALYNAS E N.Reliability and cost optimization of electronic devices considering the component failure rate uncertainty.Reliability Engineering & System Safety,2004,84(3):271-284.
[8]  BLANKS H S.Arrhenius and the temperature dependence of non-constant failure rate.Quality and Reliability Engineering International,1990,6(4):259-265.
[9]  BORGONOVO E.A new uncertainty importance measure.Reliability Engineering & System Safety,2007,92(6):771-784.
[10]  SALTELLI A,MARIVOET J.Non-parametric statistics in sensitivity analysis for model output:A comparison of selected techniques.Reliability Engineering & System Safety,1990,28(2):229-253.
[11]  SOBOL I M.Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates.Mathematics and Computers in Simulation,2001,55(1):271-280.
[12]  NOVI INVERARDI P L,TAGLIANI A.Maximum entropy density estimation from fractional moments.Communications in Statistics-Theory and Methods,2003,32(2):327-345.
[13]  ZHANG X,PANDEY M D.Structural reliability analysis based on the concepts of entropy,fractional moment and dimensional reduction method.Structural Safety,2013,43(9):28-40.
[14]  CREMERS D,OSHER S J,SOATTO S.Kernel density estimation and intrinsic alignment for shape priors in level set segmentation.International Journal of Computer Vision,2015,69(3):335-351.
[15]  张磊刚,吕震宙,陈军.基于失效概率的矩独立重要性测度的高效算法.航空学报,2014,35(8):2199-2206.ZHANG L G,LYU Z Z,CHEN J.An efficient method for failure probability-based moment-independent importance measure.Acta Aeronautica et Astronautica Sinica,2014,35(8):2199-2206(in Chinese).
[16]  LEIBLER R A,KULLBACK S.On information and sufficiency.Annals of Mathematical Statistics,1951,22(1):79-86.
[17]  尹晓伟,钱文学,谢里阳.系统可靠性的贝叶斯网络评估方法.航空学报,2008,29(6):1482-1489.YIN X W,QIAN W X,XIE L Y.A method for system reliability assessment based on bayesian networks.Acta Aeronautica et Astronautica Sinica,2008,29(6):1482-1489(in Chinese).
[18]  袁朝辉,崔华阳,侯晨光.民用飞机电液舵机故障树分析.机床与液压,2006(11):221-223.YUAN C H,CUI H Y,HOU C G.Fault tree analysis of civil aircraft electro-hydraulic actuator.Machine Tool & Hydraulics,2006(11):221-223(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133