全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

行星三体引力摄动对卫星探测器大气制动的影响
Effect of planet's third-body gravitational perturbation on aerobraking of moon's explorer

DOI: 10.13700/j.bh.1001-5965.2017.0249

Keywords: 大气制动,三体引力摄动,Milankovitch参数,平均轨道要素,半解析轨道运动方程
aerobraking
,third-body gravitational perturbation,Milankovitch elements,averaged orbital elements,semi-analytical orbital motion equation

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 考虑行星引力在其卫星探测器大气制动过程中的显著摄动,建立了基于Milankovitch参数的平均轨道动力学模型并对土卫六探测器进行仿真。首先,将轨道参数转换为无奇异的Milankovitch参数,考虑探测卫星的大气阻力、扁率摄动以及行星引力摄动,建立了半解析轨道方程。其次,以土卫六探测器为对象,选择不同的土星初始方位角进行有大气和无大气情况下的数值仿真,并进行比较分析。结果表明,土星初始方位角的选择会引起土卫六大气制动轨道偏心率和近拱点高度在不同范围内震荡,极大地影响大气制动效果。
Abstract:An averaged orbital dynamics model for a natural satellite aerobraking was established and an Titan explorer was simulated to study the notable planet's third-body gravitational perturbation during the process. Firstly, non-singular Milankovitch elements were introduced to represent the orbital motion. A semi-analytical orbital equation was obtained considering moon's atmospheric drag, oblateness perturbation, and planet's gravitational perturbation. Secondly, taking Titan explorer as an example, simulations and analysis were carried out with different azimuth choices between Saturn and apse line when atmospheric drag was excluded and included. The results show that different initial azimuth of Saturn with respect to the apsidal line would cause that eccentricity and periapsis height oscillate in different intervals, which will ultimately influence the aerobraking result.

References

[1]  MUNK M M,POWELL R W.Aeroassist technology planning for exploration[J].Advances in the Astronautical Sciences,2000,105(2):1073-1083.
[2]  SPENCER D A,TOLSON R.Aerobraking cost and risk decisions[J].Journal of Spacecraft and Rockets,2007,44(6):1285-1293.
[3]  RAO A V,TANG S,HALLMAN W P.Numerical optimization study of multiple-pass aeroassisted orbital transfer[J].Optimal Control Applications and Methods,2002,23(4):215-238.
[4]  吴德隆,王小军.航天器气动力辅助变轨动力学与最优控制[M].北京:中国宇航出版社,2006:10.WU D L,WANG X J.Aeroassisted orbit transfer dynamics and optimal control for spacecraft[M].Beijing:China Astronautics Publishing House,2006:10(in Chinese).
[5]  季英良,朱宏玉,杨博.利用气动力的大气制动过程中近心点高度控制[J].北京航空航天大学学报,2015,41(3):517-522.JI Y L,ZHU H Y,YANG B.Perigee altitude control using aerodynamic force during aerobraking[J].Journal of Beijing University of Aeronautics and Astronautics,2015,41(3):517-522(in Chinese).
[6]  JITS R Y,WALBERG G D.Blended control,predictor-corrector guidance algorithm:An enabling technology for mars aerocapture[J].Acta Astronautica,2004,54(6):385-398.
[7]  LU P,CERIMELE C J,TIGGES M A,et al.Optimal aerocapture guidance[J].Journal of Guidance,Control,and Dynamics,2015,38(4):553-565.
[8]  陈统,徐世杰.火星轨道大气制动策略研究[C]//全国第十四届空间及运动体控制技术学术年会论文集.北京:中国自动化学会空间及运动体控制专业委员会,2010:129-134.CHEN T,XU S J.Research on mars orbit aerobraking strategy[C]//Proceedings of the 14th National Academic Conference on Space-and Moving-body Control Technology.Beijing:Space and Moving-body Control Committee of Chinese Association of Automation,2010:129-134(in Chinese).
[9]  KUMAR M,TEWARI A.Trajectory and attitude simulation for mars aerocapture and aerobraking[J].Journal of Spacecraft and Rockets,2006,43(3):585-593.
[10]  张文普,韩波,张成义.大气制动期间探测器的气动特性和轨道计算[J].应用数学和力学,2010,31(9):1016-1026.ZHANG W P,HAN B,ZHANG C Y.Spacecraft aerodynamics and trajectory simulation during aerobraking[J].Applied Mathematics and Mechanics,2010,31(9):1016-1026(in Chinese).
[11]  周垂红,刘林.利用行星大气制动形成环绕型目标轨道的耗时问题[J].飞行器测控学报,2013,32(5):438-443.ZHOU C H,LIU L.Time needed to use aerobraking to insert planetary low orbiters[J].Journal of Spacecraft TT&C Technology,2013,32(5):438-443(in Chinese).
[12]  吕敬,张明明,龚胜平.旋转大气下火星探测器轨道捕获[J].北京航空航天大学学报,2013,39(3):315-319.LV J,ZHANG M M,GONG S P.Aerocapture period under rotating atmospheric environment for mars vehicle[J].Journal of Beijing University of Aeronautics and Astronautics,2013,39(3):315-319(in Chinese).
[13]  吴耀,姚伟,吕晓辰,等.一种用于土卫六探测的热机浮空器性能分析[J].宇航学报,2016,37(2):223-228.WU Y,YAO W,LV X C,et al.Performance analysis of a heat engine aeroboat for titan exploration[J].Journal of Astronautics,2016,37(2):223-228(in Chinese).
[14]  VAN HOOLST T,RAMBAUX N,KARATEKIN ?,et al.The effect of gravitational and pressure torques on Titan's length-of-day variations[J].ICARUS,2009,200(1):256-264.
[15]  WANG Y,GURFIL P.Dynamical modeling and lifetime analysis of geostationary transfer orbits[J].Acta Astronautica,2016,128:262-276.
[16]  ROSENGREN A J,SCHEERES D J.Long-term dynamics of high area-to-mass ratio objects in high-earth orbit[J].Advances in Space Research,2013,52(8):1545-1560.
[17]  WAITE J H,BELL J,LORENZ R,et al.A model of variability in Titan's atmospheric structure[J].Planetary and Space Science,2013,86:45-56.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133