全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

应用于语种识别的加权音素对数似然比特征
Weighted phone log-likelihood ratio feature for spoken language recognition

DOI: 10.16511/j.cnki.qhdxxb.2017.25.042

Keywords: 语音信号处理,语种识别,语种鉴别性,加权音素对数似然比(WPLLR),F比,
speech signal processing
,spoken language recognition,linguistic discrimination,weighted phone log-likelihood ratio (WPLLR),F-ratio

Full-Text   Cite this paper   Add to My Lib

Abstract:

语种识别的关键问题之一是提取语音信号中的语种鉴别性信息。近期,音素对数似然比(phone log-likelihood ratio,PLLR)的新特征被引入语种识别领域,并表现出了优异的性能。该文利用F比方法分析了PLLR特征向量各维的语种鉴别性大小,提出了加权音素对数似然比(weighted PLLR,WPLLR)特征,赋予PLLR特征中含有较多语种鉴别性信息的分量较高的权重。在美国国家标准技术署(National Institute of Standards and Technology,NIST)2007年语种识别测试集上的实验结果表明:相比于原PLLR特征,该文所提出的WPLLR特征在平均检测代价和等错率2个指标上都显著降低。
Abstract:The extraction of linguistic discriminative features is one of the fundamental issues in spoken language recognition (SLR). The frame level phone log-likelihood ratio (PLLR) has been recently introduced to improve language recognition. In this paper, the F-ratio analysis method is used to analyze the contributions of different SLR feature vector dimensions. Then, a weighted phone log-likelihood ratio (WPLLR) feature is used to more heavily weight those dimensions with high F-ratio values. Tests on the National Institute of Standards and Technology (NIST) 2007 dataset for SLR show the effectiveness of this feature, with significant relative improvements in the average cost performance and equal error rate compared with the PLLR feature.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133