|
- 2018
基于波长位移光纤的232Th+ZnS(Ag)闪烁体中子探测器
|
Abstract:
闪烁体光纤探测器是近年来发展起来的一种可用于中子测量的新型探测器,为了提高闪烁体光纤探测器的中子探测效率,该文以232Th+ZnS(Ag)为探测器材料,利用波长位移光纤代替普通光纤收集和传输信号,并对改进的探测器的探测效率进行了理论分析和实验验证。研究结果表明:波长位移光纤探测器的计数率约为普通光纤的1.7倍。该探测器应用于加速器驱动次临界系统的中子探测,获得了次临界反应堆实验装置中子的分布变化规律,与计算结果较为一致。
Abstract:Optical fiber scintillator neutron detectors have developed rapidly in recent years because these detectors are small (so that they can be extended into narrow spaces) and give real-time measurements. However, the probe detection efficiency is low due to the small size of the probe's effective detection material. This study presents a theoretical and experimental study of a 232Th+ ZnS(Ag) neutron detector with a wavelength-shifting fiber was used to improve the detection efficiency. This detector was used to measure the neutron distribution of the ADS sub-critical experimental assembly with the measurement results being consistent with the theoretical model which indicates that the high detection efficiency is very good and the wavelength-shifting fiber neutron detector is accurate.
[1] | YAGI T, UNESAKI H, MISAWA T, et al. Development of a small scintillation detector with an optical fiber for fast neutrons[J]. Applied Radiation and Isotopes, 2011, 69(2):539-544. |
[2] | JANG K W, CHO D H, YOO W J, et al. Measurements of thermal neutron distribution of nuclear fuel using a plastic fiber-optic sensor[J]. Journal of Sensor Science and Technology, 2009, 18(5):402-407. |
[3] | 史永谦. 核反应堆中子学实验技术[M]. 北京:中国原子能出版社, 2011.SHI Y Q. Nuclear reactor neutrons experimental technology[M]. Beijing:China Atomic Energy Publishing House, 2011. (in Chinese) |
[4] | MORI C, URITANI A, MIYAHARA H, et al. Measurement of neutron and γ-ray intensity distributions with an optical fiber-scintillator detector[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 422(1-3):129-132. |
[5] | MATSUMOTO T, HARANO H, MASUDA A, et al. New idea of a small-sized neutron detector with a plastic fibre[J]. Radiation Protection Dosimetry, 2011, 146(1-3):92-95. |
[6] | ITO Y, KATANO G, HARANO H, et al. Development of a tiny neutron probe with an optical fibre for BNCT[J]. Radiation Protection Dosimetry, 2004, 110(1-4):619-622. |
[7] | YAGI T, MISAWA T, PYEON C H, et al. A small high sensitivity neutron detector using a wavelength-shifting fiber[J]. Applied Radiation and Isotopes, 2011, 69(1):176-179. |
[8] | 王玉田. 光电子学与光纤传感器技术[M]. 北京:国防工业出版社, 2003. WANG Y T. The Optoelectronics and optical fiber sensor technology[M]. Beijing:National Defense Industry Press, 2003. (in Chinese) |
[9] | YAGI T, PYEON C H, MISAWA T. Application of wavelength-shifting fiber to subcriticality measurements[J]. Applied Radiation and Isotopes, 2013, 72:11-15. |
[10] | WU C, TANG B, SUN Z J, et al. A study of ZnS(Ag)/<sup>6</sup>LiF with different mass ratios[J]. Radiation Measurements, 2013, 58:128-132. |
[11] | 李严严, 张雪荧, 张艳斌, 等. 用于在线测量反应堆内热中子相对通量密度分布的闪烁体光纤探测器研究[J]. 原子能科学技术, 2017, 51(7):1290-1295. LI Y Y, ZHANG X Y, ZHANG Y B, et al. Study on scintillator fiber detector for online measurement of thermal neutron relative flux density distribution in reactor[J]. Atomic Energy Science and Technology, 2017, 51(7):1290-1295. (in Chinese) |
[12] | MORI C, OSADA T, YANAGIDA K, et al. Simple and quick measurement of neutron flux distribution by using an optical fiber with scintillator[J]. Journal of Nuclear Science and Technology, 1994, 31(3):248-249. |
[13] | 白召乐, 周琦, 杨中建, 等. 用于反应堆内相对中子通量密度在线测量的闪烁体光纤探测系统研制[J]. 原子能科学技术, 2017, 51(9):1658-1664. BAI Z L, ZHOU Q, YANG Z J, et al. Development on scintillator fiber detect system for on-line measurement of relative neutron flux density in reactor[J]. Atomic Energy Science and Technology, 2017, 51(9):1658-1664. (in Chinese) |
[14] | 史永谦, 夏普, 罗璋琳, 等. ADS次临界实验装置——启明星1#[J]. 原子能科学技术, 2005, 39(5):447-450. SHI Y Q, XIA P, LUO Z L, et al. ADS sub-critical experimental assembly——Venus 1#[J]. Atomic Energy Science and Technology, 2005, 39(5):447-450. (in Chinese) |