全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

基于用户位置信息的密钥生成安全性
Security of a position-based secret key generation method

Keywords: 无线通信,用户位置信息,密钥生成速率,散射环境,
wireless communication
,the positions information of users,secret key rate,scattering environment

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着无线与移动通信个人业务的快速发展,利用无线信道的特性生成密钥的方法成为新的研究热点,但这种方法并非绝对安全。当窃听者获得足够的散射环境信息和用户位置信息,就可能重构出合法用户之间的信道信息,影响密钥的安全性。其中用户和窃听者共同的散射环境难以做到对窃听者保密,但用户位置信息由于用户移动和窃听者有限的观测能力具备不确定性,能够为密钥生成提供安全保障。该文以密钥生成速率为安全性的衡量,研究了基于合法用户位置信息的密钥生成速率。首先推导了窃听者对不同场景(视距、非视距和不同散射物数量)中的用户位置推测误差表达式; 然后通过仿真,分析了窃听者对距离和角度不同观测误差、同一密钥生成周期内不同的信道观测次数对密钥生成速率的影响; 基于仿真和分析结果,证明了利用用户位置不确定度能够保障一定的密钥生成速率,从而确保了密钥的安全。
Abstract:With the increasing demand for security, many systems take advantage of channel randomness to generate secret keys. However, when an eavesdropper has good knowledge of the environmental information and the position information of legal users, this method is not absolutely safe. The scattering environmental information cannot be kept secret but the system can still be secure based on the uncertainty of the positions of legal users due to the users movements and the limited observation ability of the eavesdroppers. This study analyzes the security of the position-based secret keys generation method with the security measured by the secret key rates. The calculational errors of the positions of the legal users in different scenarios (LOS, NLOS and different numbers of scattering objects) are analyzed first. Then, the impacts of the distance observation error, the azimuth observation error and the number of observations in each secret key generation period on the secret key rates are analyzed in simulations. The results show that the uncertainty of the positions of legal users can be used to provide security for the secret keys.

References

[1]  Wallace J W, Sarma R K. Automatic secret keys from reciprocal MIMO wireless channels: measurement and analysis [J]. Trans on Information Forensics and Security, 2010, 5(3): 381-392.
[2]  Gungor O, Chen F, Koksal C E. Secret key generation from mobility [C]// Globecom 2011. Houston, USA: IEEE Press, 2011: 874-878.
[3]  Gungor O, Chen F, Koksal C E. Secret key generation via locatlization and mobility in wireless networks [DB/OL]. [2014-10-01]. http://arxiv.org/abs/1112.2793v5.
[4]  Zhang X D, Liang Y C. Prefiltering-based ESPRIT for estimating parameters of sinusoids in non-Gaussian ARMA noise [J].IEEE Trans Signal Processing, 1993, 43(1): 349-353.
[5]  Chan Y T. A simple and efficient estimation for hyperbolic location [J]. IEEE Trans Signal Processing, 1994, 42(8): 1905-1915.
[6]  Wallace J W, Chen C, Jensen M A. Key generation exploiting MIMO channel evolution: algorithms and theoretical limits [C]// EUCAP 2009. Berlin, German: IEEE Press, 2009: 1499-1503.
[7]  Wang Q, Su H, Ren K, et al. Fast and scalable secret key generation exploiting channel phase randomness in wireless networks [C]// Infocom 2011. Shanghai, China: IEEE Press, 2011: 1422-1430.
[8]  Fleury B H, Henri B. High-resolution channel parameter estimation for MIMO application using the SAGE algorithm [C]// 2002 International Zurich Seminar on Broadband communications. Zurich, Switzerland: IEEE Press, 2002: 301-309.
[9]  Bloch M R, Laneman J N. Secrecy form resolvability [DB/OL]. [2014-10-01].http://arxiv.org/abs/1105.5419v3.
[10]  Foy W. Position-location solutions by Taylor series estimation [J]. IEEE on Aerospace and Electronic Systems, 1976, 12(3): 187-194.
[11]  Wallace J W. Secure physical layer key generation schemes: performance and information theoretic limits [C]// ICC 09. Dresden, German: IEEE Press. 2009: 1-5.
[12]  Wyner A. The wire-tap channel [J]. Bell Syst Tech J, 1975, 54(8): 1355-1387.
[13]  Schau H C. Passive source localization employing interesting spherical surfaces from time of arrival differences [J]. IEEE Trans Acoustics, Speech and Signal Processing, 1987, 35(8): 1223-1225.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133