全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于特征关联模型的广告点击率预测
CTR prediction for online advertising based on a features conjunction model

DOI: 10.16511/j.cnki.qhdxxb.2018.26.021

Keywords: 点击率预测,特征关联,在线最优化,混合正则项,
click-through rate (CTR)
,features conjunction,online optimization,mixed regularization

Full-Text   Cite this paper   Add to My Lib

Abstract:

点击率(click-through rate,CTR)预测是互联网公司中重要的研究课题,预测结果与上下文、用户属性和广告属性息息相关,CTR的有效预测对提高广告公司的收入至关重要。该文在对传统逻辑回归(logistic regression,LR)模型的相关原理和参数优化算法介绍的基础上,抽离出用户特征和广告特征,将用户与广告之间特征的关联信息添加到Sigmoid函数中得到一种特征关联模型。与以往求解方法不同,该方法采用在线最优化算法FTRL(follow-the-regularized-leader)提高参数计算效率,采用混合正则化来防止训练过拟合。真实的广告数据集上的实验结果表明:该方法与传统的模型和方法相比具有更好的预测精度、效率、参数敏感性和可靠性。
Abstract:Click-through rate (CTR) predictions are important for internet companies. The CTR is closely related to the context, user attributes and advertising attributes, with effective CTR predictions essential for improving company revenue. The traditional LR model was optimized to predict the relationship between the user and advertiser characteristics for the CTR which were added to the Sigmoid function to obtain a new features conjunction model. The online optimization algorithm follow-the-regularized-leader (FTRL) was used to improve the efficiency of the parameter, and the mixed regularization was used to prevent over fitting. Tests on a real-world advertising dataset show that this method has better accuracy, efficiency, parameter sensitivity and reliability compared with previous algorithms.

References

[1]  CHAPELLE O, MANAVOGLU E, ROSALES R. Simple and scalable response prediction for display advertising[J]. ACM Transactions on Intelligent Systems and Technology, 2015, 5(4):1-34.
[2]  AGARWAL A, CHAPELLE O, DUDíK M, et al. A reliable effective terascale linear learning system[J]. The Journal of Machine Learning Research, 2014, 15(1):1111-1133.
[3]  黄璐, 林川杰, 何军, 等. 融合主题模型和协同过滤的多样化移动应用推荐[J]. 软件学报, 2017, 28(3):708-720. HUANG L, LIN C J, HE J, et al. Diversified mobile app recommendation combining topic model and collaborative filtering[J]. Journal of Software, 2017, 28(3):708-720. (in Chinese)
[4]  GRAEPEL T, CANDELA J Q, BORCHERT T, et al. Web-scale Bayesian click-through rate prediction for sponsored search advertising in microsoft's bing search engine[C]//Proceedings of the 27th International Conference on Machine Learning. Haifa, Israel:ACM, 2010:13-20.
[5]  MA J, SAUL L K, SAVAGE S, et al. Learning to detect malicious URLs[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3):1-24.
[6]  BAI Y Q, SHEN K J. Alternating direction method of multipliers for <i>L</i><sub>1</sub>-<i>L</i><sub>2</sub>-regularized logistic regression model[J]. Journal of the Operations Research Society of China, 2016, 4(2):243-253.
[7]  QUAN D Y, YIN L H, GUO Y C. Assessing the disclosure of user profile in mobile-aware services[C]//Proceedings of the 11th International Conference on Information Security and Cryptology. Beijing, China:Springer, 2015:451-467.
[8]  DUCHI J, SINGER Y. Efficient online and batch learning using forward backward splitting[J]. The Journal of Machine Learning Research, 2009, 10:2899-2934.
[9]  LIN X. Dual averaging methods for regularized stochastic learning and online optimization[J]. The Journal of Machine Learning Research, 2010, 11:2543-2596.
[10]  MCMAHAN H B, HOLT G, SCULLEY D, et al. Ad click prediction:A view from the trenches[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Chicago, USA:ACM, 2013:1222-1230.
[11]  YAN L, LI W J, XUE R G, et al. Coupled group lasso for web-scale CTR prediction in display advertising[C]//Proceedings of the 31st International Conference on Machine Learning. Beijing, China:ACM, 2014:802-810.
[12]  ZINKEVICH M. Online convex programming and generalized infinitesimal gradient ascent[C]//Proceedings of the 20th International Conference on Machine Learning. Washington, USA:AAIA, 2003:928-936.
[13]  LANGFORD J, LI L H, ZHANG T. Sparse online learning via truncated gradient[J]. The Journal of Machine Learning Research, 2009, 10:777-801.
[14]  MCMAHAN H B. Follow-the-regularized-leader and mirror descent:Equivalence theorems and <i>L</i><sub>1</sub>-regularization[C]//Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. Fort Lauderdale, USA:JMLR, 2011:525-533.
[15]  BILGIC B, CHATNUNTAWECH I, FAN A P, et al. Fast image reconstruction with <i>L</i><sub>2</sub>-regularization[J]. Journal of Magnetic Resonance Imaging, 2014, 40(1):181-191.
[16]  TIBSHIRANI R. Regression shrinkage and selection via the Lasso[J]. Journal of the Royal Statistical Society, 1996, 58(1):267-288.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133