全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于深度学习的自动驾驶技术综述
Overview of deep learning intelligent driving methods

DOI: 10.16511/j.cnki.qhdxxb.2018.21.010

Keywords: 计算机视觉,深度学习,无人驾驶车辆,传感器,
computer vision
,deep learning,autonomous vehicle,sensor

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文在行人检测技术方面介绍了基于卷积神经网络(CNN)模型的目标识别、检测技术与改进的区域卷积神经网络(R-CNN)、任务辅助卷积神经网络(TA-CNN)模型技术。在立体匹配技术方面简述了基于孪生网络的立体匹配的深度学习模型技术。在多传感器融合技术方面回顾了基于深度学习网络的视觉传感器、雷达传感器与摄像机传感器的多源数据融合技术。在汽车控制技术方面分析了基于卷积神经网络实现无人驾驶车辆端到端的横向与纵向控制技术。深度学习技术在自动驾驶领域的感知层、决策层与控制层的广泛运用,不断地提高感知、检测、决策与控制的准确率,并取得一定的成功,分析表明深度学习技术将加速自动驾驶技术的发展速度,为自动驾驶成为现实带来巨大的可能性。
Abstract:This paper introduces target recognition and detection methods based on the convolutional neural network (CNN) model, the improved regions with convolutional neural network (R-CNN) and the task-assistant convolutional neural network (TA-CNN) model for pedestrian detection. This paper also describes stereo matching based on a deep learning model for stereo matching using the Siamese network. Multi-source data fusion is also introduced based on a vision sensor, a radar sensor and a camera using a deep learning network. The CNN is used for end-to-end horizontal and vertical control of autonomous vehicles. Deep learning is widely used in the perception level, decision-making level and control level in automatic driving systems to continuously improve the perception, detection, decision-making and control accuracy. Analyses show that deep learning will improve of autonomous driving systems.

References

[1]  D?RR D, GRABENGIESSER D, GAUTERIN F. Online driving style recognition using fuzzy logic[C]//Proceedings of the 17th International Conference on Intelligent Transportation Systems (ITSC). Qingdao, China:IEEE, 2014:1021-1026.
[2]  DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA:IEEE, 2005, 1:886-893.
[3]  GAO W, AI H Z, LAO S H. Adaptive Contour Features in oriented granular space for human detection and segmentation[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA:IEEE, 2009:1786-1793.
[4]  LIU Y Z, SHAN S G, ZHANG W C, et al. Granularity-tunable gradients partition (GGP) descriptors for human detection[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA:IEEE, 2009:1255-1262.
[5]  WALK S, MAJER N, SCHINDLER K, et al. New features and insights for pedestrian detection[C]//Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA:IEEE, 2010:1030-1037.
[6]  PL?CHL M, EDELMANN J. Driver models in automobile dynamics application[J]. Vehicle System Dynamics, 2007, 45(7-8):699-741.
[7]  WALLACE B, GOUBRAN R, KNOEFEL F, et al. Measuring variation in driving habits between drivers[C]//Proceedings of the 2014 IEEE International Symposium on Medical Measurements and Applications. Lisboa, Portugal:IEEE, 2014:1-6.
[8]  GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International conference on Computer Vision. Santiago, Chile:IEEE, 2015:1440-1448.
[9]  REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
[10]  TIAN Y L, LUO P, WANG X G, et al. Pedestrian detection aided by deep learning semantic tasks[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA:IEEE, 2015:5079-5087.
[11]  LUO L H. Adaptive cruise control design with consideration of humans' driving psychology[C]//Proceedings of the 11th World Congress on Intelligent Control and Automation. Shenyang, China:IEEE, 2014:2973-2978.
[12]  PACHECO J E, LóPEZ E. Monitoring driving habits through an automotive CAN network[C]//Proceedings of the 23rd International Conference on Electronics, Communications and Computing. Cholula, Mexico:IEEE, 2013:138-143.
[13]  BOJARSKI M, DEL TESTA D, DWORAKOWSKI D, et al. End to end learning for self-driving cars[J/OL]. (2016-04-25). http://arxiv.org/pdf/1604.07316.pdf.
[14]  WU J X, GEYER C, REHG J M. Real-time human detection using contour cues[C]//Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Shanghai, China:IEEE, 2011:860-867.
[15]  MVHLMANN K, MAIER D, HESSER J, et al. Calculating dense disparity maps from color stereo images, an efficient implementation[J]. International Journal of Computer Vision, 2002, 47(1-3):79-88.
[16]  SCHLOSSER J, CHOW C K, KIRA Z. Fusing LIDAR and images for pedestrian detection using convolutional neural networks[C]//Proceedings of the2016 IEEE International Conference on Robotics and Automation. Stockholm, Sweden:IEEE, 2016:2198-2205.
[17]  VAN LY M, MARTIN S, TRIVEDI M M. Driver classification and driving style recognition using inertial sensors[C]//Proceedings of the 2013 IEEE Intelligent Vehicles Symposium (IV). Gold Coast, QLD, Australia:IEEE, 2013:1040-1045.
[18]  POMERLEAU D A. ALVINN:An autonomous land vehicle in a neural network[C]//Advances in Neural Information Processing Systems. San Francisco, CA, USA:ACM, 1989:305-313.
[19]  CHEN C Y, SEFF A, KORNHAUSER A, et al. DeepDriving:Learning affordance for direct perception in autonomous driving[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago, Chile:IEEE, 2015:2722-2730.
[20]  GAVRILA D M. A Bayesian, exemplar-based approach to hierarchical shape matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(8):1408-1421.
[21]  MU Y D, YAN S C, LIU Y, et al. Discriminative local binary patterns for human detection in personal album[C]//Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska, USA:IEEE, 2008:1-8.
[22]  TUZEL O, PORIKLI F, MEER P. Pedestrian detection via classification on Riemannian manifolds[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(10):1713-1727.
[23]  WATANABE T, ITO S, YOKOI K. Co-occurrence histograms of oriented gradients for human detection[J]. IPSJ Transactions on Computer Vision and Applications, 2010, 2:39-47.
[24]  GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA:IEEE, 2014:580-587.
[25]  CHOPRA S, HADSELL R, LECUN Y. Learning a similarity metric discriminatively, with application to face verification[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA:IEEE, 2005, 1:539-546.
[26]  ALJAAFREH A, ALSHABATAT N, NAJIM AL-DIN M S. Driving style recognition using fuzzy logic[C]//Proceedings of the 2012 IEEE International Conferenceon Vehicular Electronics and Safety. Istanbul, Turkey:IEEE, 2012:460-463.
[27]  JOHNSON D A, TRIVEDI M M. Driving style recognition using a smartphone as a sensor platform[C]//Proceedings of the 14th International IEEE Conference on Intelligent Transportation Systems. Washington, DC, USA:IEEE, 2011:1609-1615.
[28]  WU B, NEVATIA R. Detection of multiple, partially occluded humans in a single image by Bayesian combination of edgelet part detectors[C]//Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing, China:IEEE, 2005, 1:90-97.
[29]  WANG X Y, HAN T X, YAN S C. An HOG-LBP human detector with partial occlusion handling[C]//Proceedings of the 12th International Conference on Computer Vision. Kyoto, Japan:IEEE, 2009:32-39.
[30]  DOLLAR P, TU Z W, PERONA P, et al. Integral channel features[C]//Proceedings of the British Machine Vision Conference. London, UK:BMVC, 2009:1-11.
[31]  LUO W J, SCHWING A G, URTASUN R. Efficient deep learning for stereo matching[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA:IEEE, 2016:5695-5703.
[32]  BUTAKOV V, IOANNOU P. Driving autopilot with personalization feature for improved safety and comfort[C]//Proceedings of the 18th International Conference on Intelligent Transportation Systems. Las Palmas, Spain:IEEE, 2015:387-393.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133