全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于MIKPSO-SVM方法的工业控制系统入侵检测
Intrusion detection for industrial control systems based on an improved SVM method

DOI: 10.16511/j.cnki.qhdxxb.2018.25.019

Keywords: 工业控制系统,入侵检测,多新息Kalman粒子群算法,支持向量机,
industry control system
,intrusion detection,multi-innovation Kalman particle swarm optimization (MIKPSO),support vector machine (SVM)

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对Kalman粒子群算法在优化基于支持向量机的工业控制系统入侵检测模型时易陷入局部极小的问题,该文提出了一种改进的多新息Kalman粒子群算法。所提算法不仅考虑当前粒子信息的观测值,同时充分利用之前时刻的有用信息对粒子的状态进行估计,为粒子位置的更新提供足够的冲量,使得算法跳出局部极小,从而提高了算法的优化精度。将所提出的改进算法用于支持向量机工控入侵检测模型参数寻优,并使用工控入侵检测标准数据集进行仿真研究。仿真结果表明:与Kalman粒子群、粒子群以及遗传算法相比,该文所提出的算法——优化的支持向量机入侵检测模型在检测率、漏报率和误报率等指标上都有明显提升。
Abstract:Industrial control system intrusion detection models based on the support vector machine (SVM) optimized by Kalman particle swarm optimization (KPSO) can become trapped in a local minimum. This paper presents a multi-innovation theory based KPSO that not only considers the current time observation information, but also uses previously useful information for predicting the particle states. Therefore, the algorithm provides sufficient momentum for updating the particle position so that the algorithm can jump out of a local minimum for better optimization accuracy. The algorithm was used to optimize the parameters for an SVM based intrusion detection model with the simulation results evaluated using the industrial intrusion detection standard dataset. The results show that the detection rate, false negative rate and false positive rate are significantly better with the SVM intrusion detection model optimized by this algorithm than with the KPSO, PSO and genetic algorithms.

References

[1]  SIWAR K, LUDOVIC P C, MARC B, et al. A survey of approaches combining safety and security for industrial control systems[J]. Reliability Engineering and System Safety, 2015, 139:156-178.
[2]  GAO W, MORRIS T, REAVES B, et al. On SCADA control system command and response injection and intrusion detection[C]//eCrime Researchers Summit (eCrime), 2010. Dallas, TX, USA:IEEE, 2010:1-9.
[3]  JIANG J, LASITY Y. Anomaly detection via one class SVM for protection of SCADA systems[C]//International Conference on Cyber-enabled Distributed Computing and Knowledge Discovery. Beijing, China:IEEE, 2013:82-88.
[4]  BEAVER J M, BORGES-HINK R C, Buckner M A. An evaluation of machine learning methods to detect malicious SCADA communications[C]//International Conference on Machine Learning and Applications. Miami, FL, USA:IEEE, 2013:54-59.
[5]  ONDREJ L, TODD V, MILOS M. Neural network based intrusion detection system for critical infrastructures[C]//Proceedings of the International Joint Conference on Neural Networks. Atlanta, GA, USA:IEEE, 2009:14-19.
[6]  张腾飞, 范启富, 刘伟. 基于支持向量机的SCADA系统入侵检测[J]. 化工自动化及仪表, 2015(2):153-156. ZHANG T F, FAN Q F, LIU W. A support vector machine-based intrusion detection method for SCADA system[J]. Control and Instruments in Chemical Industry, 2015(2):153-156. (in Chinese)
[7]  王华忠, 杨智慧, 颜秉勇, 等. 融合PCA和PSO-SVM方法在工控入侵检测中的应用[J]. 科技通报, 2017, 33(1):80-85. WANG H Z, YANG Z H, YAN B Y, et al. Application of fusion PCA and PSO-SVM method in industrial control intrusion detection[J]. Bulletin of Science and Technology, 2017, 33(1):80-85. (in Chinese)
[8]  MONSON C K, SEPPI K D. The Kalman swarm:A new approach to particle motion in swarm optimization[C]//Lecture Notes in Computer Science. Berlin Heidelberg, Germany:Springer-Verlag, 2004:140-150.
[9]  戴邵武, 王克红, 钱俭学. 基于AKPSO算法的加速度计快速标定方法[J]. 传感器与微系统, 2015, 34(2):69-72. DAI S W, WANG K H, QIAN J X. Rapid calibration method for accelerometer based on AKPSO algorithm[J]. Transducer and Microsystem Technologies, 2015, 34(2):69-72. (in Chinese)
[10]  潘峰, 周倩, 李位星, 等. 标准粒子群优化算法的马尔科夫链分析[J]. 自动化学报, 2013, 39(4):381-389. PAN F, ZHOU Q, LI W X, et al. Analysis of standard particle swarm optimization algorithm based on Markov chain[J]. Acta Automatica Sinica, 2013, 39(4):381-389. (in Chinese)
[11]  HUANG C, WANG C. A GA-based feature selection and parameters optimization for support vector machines[J]. Expert Systems with Applications, 2006, 31(2):231-240.
[12]  NADER P, HONEINE P, BEAUSEROY P. One-class classification for intrusion detection in SCADA systems[J]. IEEE Transactions on Industrial Informatics, 2014, 10(4):2308-2317.
[13]  SATAPATHY S C, CHITTINENI S, KRISHNA S M, et al. Kalman particle swarm optimized polynomials for data classification[J]. Applied Mathematical Modelling, 2012, 36(1):115-126.
[14]  丁锋, 谢新民. 时变系统辨识的多新息方法[J]. 自动化学报, 1996, 22(1):85-91. DING F, XIE X M. Multi-innovation identification method for time-varying systems[J]. Acta Automatica Sinica, 1996, 22(1):85-91. (in Chinese)
[15]  HSU J, MUDD D, THORNTON Z. Mississippi State University Project Report-SCADA Anomaly Detection[R]. http://www.ece.uah.edu/~thm0009/icsdatasets/MSU_SCADA_Final_Report.pdf.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133