|
- 2017
用于MEMS陀螺的PCIe实时测控平台设计
|
Abstract:
该文提出了一种用于微机电(micro electro mechanical system,MEMS)陀螺的PCIe (PCI express)实时测控平台。系统通过对PCIe和现场可编程门阵列(field programmable gate array,FPGA)驱动以及延时环节进行加速优化,实现了陀螺驱动频率闭环和驱动幅度闭环控制,使线振动陀螺工作在谐振频率上且幅值稳定。针对测控系统的实时性和稳定性特性,从硬件和软件两个层面进行了分析。首先在PCIe总线方面,优化了FPGA硬件,对总线传输控制和PCIe IP核接口控制进行了加速处理,将单次读数耗时降至1.8 μs;其次在系统软件方面,完成对底层驱动和算法的精简,减少内核层和用户层之间的数据传输延时,并通过制定高效的数据时序控制方案,实现数据稳定传输,最终将系统的采样频率稳定在100 kHz。
Abstract:APCI Express (PCIe) real-time measurement and control platform was developed for micro electro mechanical system(MEMS) gyroscopes. The PCIe, the field programmable gate array (FPGA) driver and the delay link were optimized and accelerated to give closed-loop control of the gyro for both the driving frequency and the driving amplitude. Consequently, the linear vibration gyroscope operates at the resonant frequency and the amplitude is stable. The real-time performance and stability of the measurement and control system are analyzed. The FPGA hardware was optimized for the PCIe bus transmission. The single readout time was reduced to 1.8 μs by accelerating the bus transmission control and the PCIe IP core interface control. The driver was streamlined to reduce the data transmission delay between the kernel layer and the user layer. Efficient data transmission timing control stabilized the data transmission. The gyroscope operating frequency was then stable at 100 kHz.