全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

高力密度直线开关磁阻电机的最佳极宽比
Optimal pole width ratio for high force density linear switched reluctance motors

DOI: 10.16511/j.cnki.qhdxxb.2018.22.017

Keywords: 直线开关磁阻电机,力密度,有限元分析,极宽,
linear switched reluctance motor
,force density,finite element analysis,pole width

Full-Text   Cite this paper   Add to My Lib

Abstract:

双凸极作为直线开关磁阻电机(LSRM)的特征结构对于电机的出力性能有着较大的影响。由于极宽是双凸极结构的关键尺寸,因此该文从理论定性分析、有限元定量分析和实验测量3个方面探究了提升LSRM力密度的最佳定动子极宽比。利用磁链线性模型定性地分析了定动子极宽如何影响电机平均输出力,从机理上揭示了定子和动子极宽分别存在使得平均输出力最大的极值点。利用参数化建模方法建立了有限元分析模型,定量地验证了理论分析的推断并给出了最大平均输出力所对应的最佳定动子极宽比范围。通过实验测量了不同定动子极宽的力曲线,实验测量结果和有限元计算结果相一致,从而验证了有限元分析的准确性。有限元分析和实验结果表明:对于提升LSRM力密度的最佳定子极宽比范围为0.4~0.45,最佳动子极宽比范围为0.45~0.5,且最佳定动子极宽比范围基本不受气隙、槽深的影响。
Abstract:The double salient structure significantly reduces the forces in a linear switched reluctance motor (LSRM). The structure is then optimized for high force densities. The pole width is the key parameter in the double salient structure with this paper focusing on the optimal pole width ratio for a high force density LSRM using qualitative and quantitative analyses and experimental measurements. The qualitative analysis based on a linear flux linkage model shows a maximum average force for various translator and stator pole widths. Then, a finite element analysis (FEA) based parametric modeling method is used to validate the results and to calculate the optimal pole width range. Force measurements then agree well with the FEA results. They both show that the optimal stator pole width ratio is 0.4 to 0.45 and the optimal translator pole width ratio is 0.45 to 0.5 for a high force density in the LSRM. The optimal width ratio does not change with the air gap or slot depth.

References

[1]  WANG D H, WANG X H, DU X F. Design and comparison of a high force density dual-side linear switched reluctance motor for long rail propulsion application with low cost[J]. IEEE Transactions on Magnetics, 2017, 53(6):1-4.
[2]  BAE H K, LEE B S, VIJAYRAHAVAN P, et al. A linear switched reluctance motor:Converter and control[J]. IEEE Transactions on Industry Applications, 2000, 36(5):1351-1359.
[3]  DESHANDE U S, CATHEY J J, RICHTER E. A high force density linear switched reluctance machine[C]//Conference Record of the 1993 IEEE Industry Applications Conference Annual Meeting. Toronto, Canada, 1993:251-257.
[4]  DALDABAN F, USTKOYUNCU N. A novel linear switched reluctance motor for railway transportation systems[J]. Energy Conversion and Management, 2010, 51(3):465-469.
[5]  COSTA M C, NABETA S I, DIETRICH A B, et al. Optimization of a switched reluctance motor using experimental design method and diffuse elements response surface[J]. IEE Proceedings:Science, Measurement and Technology, 2004, 151(6):411-413.
[6]  ARUMUGAM R, LINDSAY J F, KRISHNAN R. Sensitivity of pole arc/pole pitch ratio on switched reluctance motor performance[C]//Conference Record of the 1988 IEEE Industry Applications Society Annual Meeting. Pittsburgh, USA, 1988:50-54.
[7]  FAIZ J, FINCH J W. Aspects of design optimization for switched reluctance motors[J]. IEEE Transactions on Energy Conversion, 1993, 8(4):704-713.
[8]  CHENG H, Chen H, ZHOU Y. Design indicators and structure optimization of switched reluctance machine for electric vehicles[J]. IET Electric Power Applications, 2015, 9(4):319-331.
[9]  XUE X D, CHENG K W E, NG T W, et al. Multi-objective optimization design of in-wheel switched reluctance motors in electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2010, 57(9):2980-2987.
[10]  CHEEMA M A M, FLETCHER J E, XIAO D, et al. A linear quadratic regulator-based optimal direct thrust force control of linear permanent-magnet synchronous motor[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5):2722-2733.
[11]  DESHPANDE U. Two-dimensional finite-element analysis of a high-force-density linear switched reluctance machine including three-dimensional effects[J]. IEEE Transactions on Industry Applications, 2000, 36(4):1047-1052.
[12]  LIM H S, KRISHNAN R, LOBO N S. Design and control of a linear propulsion system for an elevator using linear switched reluctance motor drives[J]. IEEE Transactions on Industrial Electronics, 2008, 55(2):534-542.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133