|
- 2015
回火冷却速度对贝氏体焊缝韧性的影响
|
Abstract:
大尺寸厚壁构件在回火过程中冷却速度较慢。对于CrMoV钢, 若回火参数不当, 容易引起回火脆性。该文针对大尺寸厚壁环形试验件, 研究了回火冷却速度对贝氏体焊缝韧性的影响。结果表明:当回火冷却速度过慢时, 焊缝金属会发生明显的韧性降低现象; 多层多道焊焊缝脆性断口具有特殊的分层现象, 说明较慢的回火冷速只是使得焊缝局部韧性下降, 其中层间热影响区弱化程度最为明显。通过Auger分析等方法进一步研究发现, 韧性减低现象的产生与C、O元素在原奥氏体晶界的偏聚以及Ni元素在原奥氏体晶界处的含量减少有关。
Abstract:Large components with thick walls have slow cooling rates during tempering. Improper tempering parameters can cause temper brittlement in CrMoV steels. The effect of tempering cooling rate on the toughness of bainite welds is investigated for thick circular components. Slow tempering cooling rates reduce the weld toughness. Multi-layer, multi-pass welds experience layered brittle fracture, which illustrates that slow tempering cooling rates affect only local welds with the greatest toughness reduction in the heat affected zone (HAZ) between the layers. Auger electron spectroscopy (AES) analyses show that the segregation of C, O and Ni along the prior austenite grain boundaries is associated with the toughness reduction.
[1] | 陈伯蠡. 焊接冶金原理[M]. 北京: 清华大学出版社, 1991.CHEN Boli. Welding Metallurgy Principle [M]. Beijing: Tsinghua University Press, 1991. (in Chinese) |
[2] | 李洪波, 刘向东, 金宝士, 等. 21世纪以来贝氏体钢的研究开发与应用[J]. 铸造设备研究, 2005(1): 32-33.LI Hongbo, LIU Xiangdong, JIN Baoshi, et al. Research and application of bainitic steels since 21 century [J]. Research Studies on Foundry Equipment, 2005(1): 32-33. (in Chinese) |
[3] | 孙德勤, 吴春京, 谢建新. 贝氏体钢的研究开发现状与发展前景探讨[J]. 机械工程材料, 2003, 27(6): 4-7.SUN Deqin, WU Chunjing, XIE Jianxin. Research and development of bainitic steels [J]. Materials for Mechanical Engineering, 2003, 27(6): 4-7. (in Chinese) |
[4] | 胡光立, 刘正堂, 王平, 等. 几种结构钢的回火贝氏体脆性[J]. 金属学报, 1989, 25(2): 110-115.HU Guangli, LIU Zhengtang, WANG Ping, et al. Tempered bainite embrittlement in some structural steels [J]. Acta Metallrugica Sinica, 1989, 25(2): 110-115. (in Chinese) |
[5] | 薛永栋, 金明, 郭彪, 等. 大锻件用钢回火脆性的讨论[J]. 矿山机械, 2011(9): 116-119.XUE Yongdong, JING Min, GUO Biao, et al. Discussion on temper brittleness of steels for heavy forgings [J]. Mining & Processing Equipment, 2011(9): 116-119. (in Chinese) |
[6] | 陈国浩. 大型锻件用钢的回火脆性[J]. 特殊钢, 1998(5): 8-14.CHEN Guohao. Temper embrittlement of steels for heavy forging [J]. Special Steel, 1998(5): 8-14. (in Chinese) |
[7] | 李昶. 合金钢回火脆性机制探讨[J]. 江汉大学学报, 1987(2): 72-76.LI Chang. Discussion on the temper brittleness mechanism of alloy steel [J]. Journal of Jianghan University: Natural Sciences, 1987(2): 72-76. (in Chinese) |
[8] | 翁宇庆. NiCrMoV转子钢回火脆性的研究(Ⅲ): 某些合金元素(锰、钼)对回火脆性敏感性的影响[J]. 钢铁研究总院学报, 1987, 7(1): 27-35.WENG Yuqing. Investigation of temper embrittlement in NiCrMoV rotor steel (Ⅲ): Some of the alloying element effects on the temper embrittlement susceptibility [J]. Central Iron and Steel Research Institute Technical Bulletin, 1987, 7(1): 27-35. (in Chinese) |
[9] | Misa R D K, Rao P R. Grain boundary segregation isotherms [J]. Materials Science and Technology, 1997, 13(4): 277-288. |
[10] | Mulforf R A, Mcmahon C J, Pope D P, et al. Temper embrittlement of Ni-Cr steels by phosphorus [J]. Metallurgical and Materials Transactions A, 1976, 7(9): 1183-1195. |
[11] | Guttmann M. The role of residuals and alloying elements in temper embrittlement [J]. Phil Trans R Soc Lond, 1980, A295: 169-196. |
[12] | 陈朝阳, 周清跃. 钢轨用空冷贝氏体钢性能及组织的研究[J]. 中国铁道科学, 2002, 23(l): 101-104.CHEN Zhaoyang, ZHOU Qingyue. The performance and microstructure research on air-cooling bainitic steels for rails [J]. China Railway Science, 2002, 23(l): 101-104. (in Chinese) |