全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

基于散射成分一致性参数的极化SAR图像分类
Scattering component consistency based parameter for polarimetric SAR image classification

DOI: 10.16511/j.cnki.qhdxxb.2016.25.033

Keywords: 合成孔径雷达,雷达极化,特征提取,一致性参数,图像分类,
synthetic aperture radar
,radar polarimetry,feature extraction,consistency parameter,image classification

Full-Text   Cite this paper   Add to My Lib

Abstract:

散射熵能较好地反映目标散射的随机性,但忽略了相干矩阵特征分解后3个相干散射成分之间的关系。为了更充分地利用极化信息提取更有效的特征,该文提出一种描述目标散射成分一致性的新参数,并利用该参数进行图像分类。新参数融合了相干矩阵的特征值分布信息与各正交散射成分之间的相似性信息,反映了目标的整体散射机制接近于某种单一相干散射的程度。利用该新特征替代散射熵,先对AIRSAR的旧金山L波段数据进行初始分割,然后进行基于Wishart分类器的迭代调整。实验结果表明:利用该特征能够更准确地实现图像分类,展现地物细节,从而证实了该特征的有效性。
Abstract:The scattering entropy accurately describes the randomness of a scattering medium, but analyses do not use the relationships between the three eigenvectors representing the different coherent scatterings. More polarization information is extracted by a parameter describing the consistency of the scattering components to classify of polarimetric SAR images. The parameter contains information on the eigenvalue distributions and similarities between the coherent scattering components and represents the closeness of the scattering to simplex coherent scattering. The AIRSAR L-band polarimetric image of San Francisco is segmented using this parameter instead of the scattering entropy and then adjusted by a Wishart classifier. Tests demonstrate the effectiveness of this parameter to improve the classification and object details.

References

[1]  Cloude S R,Pottier E.An entropy based classification scheme for land applications of polarimetric SAR[J].IEEE Trans on Geosci and Remote Sensing,1997,35(1):68-78.
[2]  Lee J S,Grunes M R,Ainsworth T L,et al.Unsupervised classification using polarimetric decomposition and complex Wishart classifier[J].IEEE Trans on Geosci and Remote Sensing,1999,35(3):2249-2258.
[3]  Ferro-Famil L,Pottier E,Lee J S.Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/Alpha-Wishart classifier[J].IEEE Trans on Geosci and Remote Sensing,2001,39(11):2332-2342.
[4]  YIN Junjun,YANG Jian,Yamaguchi Y.A new method for polarimetric SAR image classification[C]//Proceedings of the APSAR2009.Xi'an,China:APSAR,2009:733-737.
[5]  YANG Jian,DONG Guiwei,PENG Yingning,et al.Generalized polarimetric contrast enhancement[J].IEEE Geosci and Remote Sensing Letters,2004,1(3):171-174.
[6]  AN Wentao,ZHANG Weijie,YANG Jian,et al.On the similarity parameter between two targets for the case of Multi-look Polarimetric SAR[J].Chinese Journal of Electronics,2009,18(3):545-550.
[7]  Cloude S R.An entropy based classification scheme for polarimetric SAR[C]//Proceedings of the IGARSS'95.Florence,Italy:IEEE Press,1995:2000-2002.
[8]  Cloude S R,Pottier E.A review of target decomposition theorems in radar polarimetry[J].IEEE Trans on Geosci and Remote Sensing,1996,34(2):498-518.
[9]  Park S E,Moon W M.Unsupervised classification of scattering mechanisms in polarimetric SAR data using fuzzy logic in entropy and alpha plane[J].IEEE Trans on Geosci and Remote Sensing,2007,45(8):2652-2664.
[10]  YANG Jian,PENG Yingning,LIN Shiming.Similarity between two scattering matrices[J].Electronics Letters,2001,37(3):193-194.
[11]  Lee J S,Schuler D L,Ainsworth T L.Polarimetric SAR data compensation for terrain azimuth slope variation[J].IEEE Trans on Geosci and Remote Sensing,2000,38(5):2153-2163.
[12]  AN Wentao,CUI Yi,YANG Jian.Three-component model-based decomposition for polarimetric SAR data[J].IEEE Trans on Geosci and Remote Sensing,2010,48(6):2732-2739.
[13]  AN Wentao,CUI Yi,YANG Jian,et al.Fast Alternatives to H/α for Polarimetric SAR[J].IEEE Geosci and Remote Sensing Letters,2010,7(2):343-347.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133