|
- 2018
基于MRI研究相对舌体大小对个性化发音的影响
|
Abstract:
相对舌体大小是评估发音模式的一个指标,它能预测舌体在口腔内部的移动性。该文基于核磁共振图像(MRI)研究相对舌体大小与舌体运动的关系,结合cine-MRI和tagged-MRI得到合成数据,其中既有发音器官轮廓信息,又有发音器官上特定点的运动信息。基于合成数据分析相对舌体大小和舌体运动情况。相对舌体大小定义为舌体面积和舌体与声道面积和的比值。在舌体表面的口腔和咽腔两部分选取一些点来计算舌体运动速度。结果显示:相对舌体越小,舌体运动速度越快。
Abstract:The tongue size can be used to evaluate normal and pathological articulation since it can be used to predict the tongue mobility within the oropharyngeal cavity. This study analyzes the relationship between the relative tongue size and tongue movement based on magnetic resonance images (MRI). The cine-and tagged-MRI are combined to obtain a new dataset which has clear vocal tract and marker points. The synthesized images are then used to analyze the relative tongue size and the tongue movement. The relative tongue size is defined as the ratio of the tongue area to the tongue area plus the oropharyngeal cavity area. A few marker points are sampled on the oral and pharyngeal surfaces to calculate the mean velocity. Comparison for different genders shows that smaller tongues have faster movements.
[1] | MASAKI S, TIEDE M K, HONDA K, et al. MRI-based speech production study using a synchronized sampling method[J]. Journal of the Acoustical Society of Japan, 1999, 20(5):375-379. |
[2] | ZERHOUNI E A, PARISH D M, ROGERS W J, et al. Human heart:Tagging with MR imaging-A method for noninvasive assessment of myocardial motion[J]. Radiology, 1988, 169(1):59-63. |
[3] | TAKEMOTO H, HONDA K, MASAKI S, et al. Measurement of temporal changes in vocal tract area function from 3D cine-MRI data[J]. Journal of the Acoustical Society of America, 2006, 119(2):1037-1049. |
[4] | BAO H H, LU W H, HONDA K, et al. Combined cine-and tagged-MRI for tracking landmarks on the tongue surface[C]//Proceedings of Conference of the International Speech Communication Association. Dresden, Germany, 2015:359-363. |
[5] | HONDA K, BAO H H, LU W H. Articulatory idiosyncrasy inferred from relative size and mobility of the tongue[J]. Journal of the Acoustical Society of America, 2016, 139(4):2192. |
[6] | ⅡDA-KONDO C, YOSHINO N, KURABAYASHI T, et al. Comparison of tongue volume/oral cavity volume ratio between obstructive sleep apnea syndrome patients and normal adults using magnetic resonance imaging[J]. Journal of Medical & Dental Sciences, 2006, 53(2):119-126. |
[7] | LEE J, WOO J, XING F X, et al. Semi-automatic segmentation for 3D motion analysis of the tongue with dynamic MRI[J]. Computerized Medical Imaging & Graphics, 2014, 38(8):714-724. |
[8] | KUEHN D P, MOLL K L. A cineradiographic study of VC and CV articulatory velocities[J]. Journal of Phonetics, 1976, 4:303-320. |
[9] | RIELY R R, SMITH A. Speech movements do not scale by orofacial structure size[J]. Journal of Applied Physiology, 2003, 94(6):2119-2126. |
[10] | HONDA K, MAEDA S, HASHI M, et al. Human palate and related structures:Their articulatory consequences[C]//Proceedings of International Conference on Spoken Language. Philadelphia, USA, 1996:784-787. |
[11] | RUDY K, YUNUSOVA Y. The effect of anatomic factors on tongue position variability during consonants[J]. Journal of Speech Language & Hearing Research, 2013, 56(1):137-149. |
[12] | SIMPSON A P. Dynamic consequences of differences in male and female vocal tract dimensions[J]. Journal of the Acoustical Society of America, 2001, 109(1):2153-2164. |
[13] | STONE M. A three-dimensional model of tongue movement based on ultrasound and X-ray microbeam data[J]. Journal of the Acoustical Society of America, 1998, 87(5):2207-2217. |