|
- 2018
Brayton空间核能系统质量估算模型
|
Abstract:
空间核能系统具有输出功率高、持续时间长等特点,是中国未来大型太空任务的理想选择,与地面核装置相比,其质量和体积直接决定着系统性能。该文在系统部件分析的基础上,建立了一个适用于闭式Brayton循环的质量估算模型,并开发了对应的MATLAB计算程序SPRBC。模型涵盖了核反应堆、屏蔽层、Brayton单元、回热器、热辐射器等主要部件。其中,核反应堆和屏蔽层的质量根据物理设计得到,Brayton单元的质量根据经验公式得到,回热器和热辐射器的质量根据换热器设计得到。该文研究不同功率下的系统质量,可以得出百千瓦级时系统比质量在30 kg/kWe左右。当输出功率达到兆瓦级水平时,系统比质量有可能降低到10 kg/kWe以下。此外,该文还对一个电功率为1.76 MW的Brayton空间核能系统进行了质量分析。结果表明:系统比质量可达到6.14 kg/kWe,热辐射器面积约为665 m2;系统总质量约为10.8 t,其中核反应堆、屏蔽层和Brayton单元的份额较大,分别占22.5%、22%和26.4%。
Abstract:Due to their high power and long lifetimes, nuclear power systems are being considered for long space missions in the future. Unlike current terrestrial nuclear facilities, the system mass and size are very important for space applications and define the system performance. A mass estimation model for closed Brayton cycles is studied in this paper. The MATLAB code SPRBC was used to calculate the total mass and the specific mass of a Brayton cycle space power system, including the heaviest components of the nuclear reactor, the shielding, the Brayton rotating unit, the regenerator and the heat radiator. The specific mass is nearly 30 kg/kWe for a system with hundreds of kilowatts electric power and less than 10 kg/kWe for megawatt systems. A 1.76 MW system had a specific mass of 6.14 kg/kWe and a radiator area of about 665 m2. The total mass was nearly 10.8 t, with the nuclear reactor be 22.5% of the mass, the shielding being 22% and the Brayton rotating unit being 26.4%.
[1] | NASA. Prometheus project final report[R]. Pasadena, USA:Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2005. |
[2] | RUAULT J, MASSON F, WORMS J, et al. MEGAHIT:Update on the advanced propulsion roadmap for HORIZON2020[R]. Rome, Italy:European Commission, 2014. |
[3] | FULLER R L. Closed brayton cycle power conversion unit for fission surface power phase I final report[R]. Cleveland, USA:NASA Glenn Research Center, 2010. |
[4] | JUHASZ A J. Analysis and numerical optimization of gas turbine space power systems with nuclear fission reactor heat sources[D]. Ann Arbor, USA:Cleveland State University, 2005. |
[5] | BENNETT G L. A look at the Soviet space nuclear power program[C]//Energy Conversion Engineering Conference. Washington DC, USA:National Aeronautics and Space Administration, 1989:1187-1195. |
[6] | EI-GENK M S. Deployment history and design considerations for space reactor power systems[J]. Acta Astronautica, 2009, 64(9-10):833-849. |
[7] | EI-GENK M S. Space nuclear reactor power system concepts with static and dynamic energy conversion[J]. Energy Conversion and Management, 2008, 49(3):402-411. |
[8] | MIYAZAKI K, TAKAHASHI K, SASAKI T, et al. Study on specific mass of nuclear electric propulsion system with closed cycle MHD generator[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Cleveland, USA:American Institute of Aeronautics and Astronautics, 2014:1-11. |
[9] | MARSHALL A C. RSMASS-D models:An improved method for estimating reactor and shield mass for space reactor applications[R]. Albuquerque, USA:Sandia National Laboratory, 1997. |
[10] | DEMUTH S F. SP100 space reactor design[J]. Progress in Nuclear Energy, 2003, 42(3):323-359. |
[11] | WEBB J A, GROSS B J. Aconceptual multi-megawatt system based on a tungsten CERMET reactor[C]//Nuclear and Emerging Technologies for Space 2011. Albuquerque, USA:Idaho National Laboratory, 2011:231-240. |
[12] | BUDEN D. Summary of space nuclear reactor power systems (1983-1992)[C]//Tenth Symposium on Space Nuclear Power and Propulsion. Albuquerque, USA:Idaho National Engineering Laboratory, 1993:51-57. |
[13] | JUHASZ A J. High conductivity carbon-carbon heat pipes for light weight space power system radiators[R]. Cleveland, USA:NASA Glenn Research Center, 2008. |
[14] | MASON L, GIBSON M, POSTON D. Kilowatt-class fission power systems for science and human precursor missions[R]. Cleveland, USA:NASA Glenn Research Center, 2013. |