全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

螺旋锥齿轮齿面加载性能多目标优化
Multi-objective optimization of loaded spiral bevel and hypoid gears

DOI: 10.16511/j.cnki.qhdxxb.2018.22.023

Keywords: 螺旋锥齿轮,齿面优化,齿面加载接触分析,加载接触性能,
spiral bevel and hypoid gear
,tooth flank optimization,loaded tooth contact analysis,loaded contact performance

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对螺旋锥齿轮齿面设计需进行多次试算的问题,提出了齿面加载性能多目标优化问题数学模型的建立及求解方法。建立了包含最大接触应力、加载传动误差、加载接触区范围和齿根弯曲应力的齿面加载性能多目标优化问题的数学模型;建立了考虑齿根弯曲应力计算的加载接触分析模型,用于计算优化问题中的目标函数和约束函数;采用Kriging代理模型结合多目标遗传算法对该优化问题进行求解;通过对驱动桥螺旋锥齿轮副进行多目标优化,实现了接触区完全位于理想接触区且无边缘接触,最大接触应力降低11.7%,加载传动误差降低27.9%,大小轮最大齿根弯曲应力分别降低2.0%和12.6%。通过对优化后的齿面进行驱动桥加载接触印迹台架试验,对接触区进行了验证,结果显示优化得到的接触区与试验结果吻合良好,验证了优化方法的可行性和正确性。
Abstract:The loaded stresses in the tooth flank of spiral bevel and hypoid gears were optimized without a trial-and-error procedure in a multi-objective optimization model. The multi-objective optimization model was developed considering the maximum contact pressure, load transmission error, load contact pattern and the maximum bending stress. A semi-analytical loaded tooth contact analysis model for the root bending stress was developed to calculate the objectives and constraints. Kriging surrogate models of the objectives and constraints together with a multi-objective genetic algorithm were used to solve the optimization model. The model was then used to optimize a spiral bevel gear pair for a drive axle. The loaded contact pattern was completely in the ideal zone with the maximum contact pressure decreased by 11.7%, the loaded transmission error decreased by 27.9% and the maximum bending stresses in the wheel and pinion decreased by 2.0% and 12.6%. The optimal design was installed in a drive axle for loaded contact tests that showed that the actual loaded contact pattern coincided well with the predicted loaded contact pattern, which verified the accuracy of the optimization approach.

References

[1]  SHIH Y P. A novel ease-off flank modification methodology for spiral bevel and hypoid gears[J]. Mechanism and Machine Theory, 2010, 45(8):1108-1124.
[2]  曹雪梅, 邓效忠, 聂少武. 基于共轭齿面修正的航空弧齿锥齿轮高阶传动误差齿面拓扑结构设计[J]. 航空动力学报, 2015, 30(1):195-200. CAO X M, DENG X Z, NIE S W. Ease-off flank topography design for aviation spiral bevel gears with higher-order transmission errors by modification of conjugate flank[J]. Journal of Aerospace Power, 2015, 30(1):195-200. (in Chinese)
[3]  ACHTMANN J, BA?R G. Optimized bearing ellipses of hypoid gears[J]. Journal of Mechanical Design, 2004, 125(4):739-745.
[4]  田行斌, 方宗德. 弧齿锥齿轮加工参数的全局优化设计[J]. 航空动力学报, 2000, 15(1):75-77. TIAN X B, FANG Z D. Overall optimization on machine-tool settings of spiral bevel gears[J]. Journal of Aerospace Power, 2000, 15(1):75-77. (in Chinese)
[5]  周彦伟, 方宗德, 邓效忠. 航空弧齿锥齿轮齿面接触应力计算与优化[J]. 航空动力学报, 2002, 17(3):373-376. ZHOU Y W, FANG Z D, DENG X Z. Calculation and optimization for tooth contact stress of spiral bevel gears[J]. Journal of Aerospace Power, 2002, 17(3):373-376. (in Chinese)
[6]  刘光磊, 刘则良. 弧齿锥齿轮传动误差曲线的双层优化法[J]. 农业机械学报, 2012, 43(7):223-227, 222. LIU G L, LIU Z L. Dual-layer optimization for transmission errors of spiral bevel gears[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(7):223-227, 222. (in Chinese)
[7]  SIMON V. Optimal machine tool setting for hypoid gears improving load distribution[J]. Journal of Mechanical Design, 2001, 123(4):577-582.
[8]  SIMON V. Design of face-hobbed spiral bevel gears with reduced maximum tooth contact pressure and transmission errors[J]. Chinese Journal of Aeronautics, 2013, 26(3):777-790.
[9]  ARTONI A, BRACCI A, GABICCINI M, et al. Optimization of the loaded contact pattern in hypoid gears by automatic topography modification[J]. Journal of Mechanical Design, 2008, 131(1):011008.
[10]  GABICCINI M, BRACCI A, GUIGGIANI M. Robust optimization of the loaded contact pattern in hypoid gears with uncertain misalignments[J]. Journal of Mechanical Design, 2010, 132(4):041010.
[11]  ARTONI A, KOLIVAND M, KAHRAMAN A. An ease-off based optimization of the loaded transmission error of hypoid gears[J]. Journal of Mechanical Design, 2009, 132(1):011010.
[12]  ARTONI A, GABICCINI M, GUIGGIANI M, et al. Multi-objective ease-off optimization of hypoid gears for their efficiency, noise and durability performances[C]//Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Washington DC, USA:ASME, 2011:DETC2011-47715.
[13]  王琪, 周驰, 桂良进, 等. 准双曲面齿轮LTCA弯曲变形约束方法[J]. 航空动力学报, 2017, 32(11):2800-2807. WANG Q, ZHOU C, GUI L J, et al. Constraint method of calculating tooth bending deformation of hypoid gears in LTCA[J]. Journal of Aerospace Power, 2017, 32(11):2800-2807. (in Chinese)
[14]  WILCOX L E, CHIMNER T D, NOWELL G C. Improved finite element model for calculating stresses in bevel and hypoid gear teeth[R]. Alexandria, USA:AGMA, 1997.
[15]  HOTAIT M A, KAHRAMAN A, NISHINO T. An investigation of root stresses of hypoid gears with misalignments[J]. Journal of Mechanical Design, 2011, 133(7):071006.
[16]  周驰, 彭钱磊, 丁炜琦, 等. 汽车驱动桥主减速器支承刚度的有限元分析[J]. 汽车工程, 2016, 38(8):981-988. ZHOU C, PENG Q L, DING W Q, et al. Finite element analysis on the support stiffness of final drive in vehicle drive axle[J]. Automotive Engineering, 2016, 38(8):981-988. (in Chinese)
[17]  GOSSELIN C, NONAKA T, SHIONO Y, et al. Identification of the machine settings of real hypoid gear tooth surfaces[J]. Journal of Mechanical Design, 1998, 120(3):429-440.
[18]  LIN C Y, TSAY C B, FONG Z H. Computer-aided manufacturing of spiral bevel and hypoid gears with minimum surface-deviation[J]. Mechanism and Machine Theory, 1998, 33(6):785-803.
[19]  ARTONI A, GABICCINI M, GUIGGIANI M. Nonlinear identification of machine settings for flank form modifications in hypoid gears[J]. Journal of Mechanical Design, 2008, 130(11):112602.
[20]  GIUNTA A A, WATSON L T. A comparison of approximation modeling techniques:Polynomial versus interpolating model[R]. Blacksburg, USA:AIAA, 1998.
[21]  JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4):455-492.
[22]  DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.
[23]  JEONG S, OBAYASHI S. Efficient global optimization (EGO) for multi-objective problem and data mining[C]//Proceedings of 2005 IEEE Congress on Evolutionary Computation. Edinburgh, UK:IEEE, 2005, 3:2138-2145.
[24]  LITVIN F L. Gear geometry and applied theory[M]. Englewood Cliffs, USA:Prentice-Hall, 1994.
[25]  张金良, 李少华, 方宗德, 等. 准双曲面齿轮的齿面优化设计[J]. 机械科学与技术, 2007, 26(3):366-368. ZHANG J L, LI S H, FANG Z D, et al. Hypoid gear machining parameter optimization[J]. Mechanical Science and Technology, 2007, 26(3):366-368. (in Chinese)
[26]  刘光磊, 樊红卫, 谷霁红, 等. 弧齿锥齿轮传动误差曲线优化的半变性法[J]. 航空动力学报, 2010, 25(8):1888-1893. LIU G L, FAN H W, GU J H, et al. Half-modified roll for the optimization of transmission error function of spiral bevel gears[J]. Journal of Aerospace Power, 2010, 25(8):1888-1893. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133