全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

圆柱水箱中水平多孔挡板对液面晃动影响的数值模拟研究
Numerical simulation study of the effects of horizontal porous baffles on liquid sloshing in a cylindrical tank

DOI: 10.16511/j.cnki.qhdxxb.2018.21.023

Keywords: 水平多孔挡板,浸没深度,低频大幅晃动,数值模拟,
horizontal porous baffle
,baffle submergence depth,low-frequency, large-amplitude sloshing,numerical simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

液体晃动是一种常见的现象,可能造成飞行器失稳、箱体结构损坏、液面监测困难等危害。因此对液体晃动的抑制受到了广泛深入的研究,其中最常用的方法就是在箱体内部布置挡板。基于Darcy定律的多孔介质模型为模拟多孔挡板提供了简单易行的方法,该文在对比实验结果验证数值模拟方法可靠性的基础上,研究了低频大幅晃动条件下水平多孔挡板不同浸没深度对液面晃动的影响,发现了波峰和波谷变化的规律以及在特殊情况下挡板导致波峰高度增加的现象,并对其机理进行了简要分析。挡板的阻碍对液面造成了扰动,导致液面围绕无挡板情况下的液面位置振荡运动,在特定情况下可能会出现更高的波峰,使得液面晃动看起来更加剧烈。
Abstract:Liquid sloshing is a common phenomenon that can cause instabilities in aircraft, can damage the tanks, and can complicate liquid level monitoring. Therefore, sloshing suppression has been extensively studied. The most common method is to arrange baffles in the tanks. The porous media model based on Darcy's law provides a simple method for simulating flows in tanks with porous baffles. In this study, experimental data was used to verify the reliability of numerical simulations used to investigate the influence of various immersion depths of horizontal porous baffles on liquid sloshing for low-frequency, large-amplitude sloshing conditions. The results show that the sloshing crests and troughs change more with higher sloshing crests because of the baffles in some cases. The baffles disturb the liquid surface which make the liquid surface oscillate more than without baffles. Thus, the baffles increasing the liquid sloshing in some cases.

References

[1]  IRANMANESH A, PASSANDIDEH-FARD M. A 2D numerical study on suppressing liquid sloshing using a submerged cylinder[J]. Ocean Engineering, 2017, 138:55-72.
[2]  TURNER M R. Liquid sloshing in a horizontally forced vessel with bottom topography[J]. Journal of Fluids & Structures, 2016, 64:1-26.
[3]  LUO M, KOH C G, BAI W. A three-dimensional particle method for violent sloshing under regular and irregular excitations[J]. Ocean Engineering, 2016, 120:52-63.
[4]  CHO I H, KIM M H. Effect of dual vertical porous baffles on sloshing reduction in a swaying rectangular tank[J]. Ocean Engineering, 2016, 126:364-373.
[5]  CHO I H, CHOI J S, Kim M H. Sloshing reduction in a swaying rectangular tank by an horizontal porous baffle[J]. Ocean Engineering, 2017, 138:23-34.
[6]  FALTINSEN O M, TIMOKHA A N. Natural sloshing frequencies and modes in a rectangular tank with a slat-type screen[J]. Journal of Sound & Vibration, 2011, 330(7):1490-1503.
[7]  FALTINSEN O M, FIROOZKOOHI R, TIMOKHA A N. Analytical modeling of liquid sloshing in a two-dimensional rectangular tank with a slat screen[J]. Journal of Engineering Mathematics, 2011, 70(1-3):93-109.
[8]  FALTINSEN O M, FIROOZKOOHI R, TIMOKHA A N. Effect of central slotted screen with a high solidity ratio on the secondary resonance phenomenon for liquid sloshing in a rectangular tank[J]. Physics of Fluids, 2011, 23(6):042101.
[9]  AKYILDIZ H. A numerical study of the effects of the vertical baffle on liquid sloshing in two-dimensional rectangular tank[J]. Journal of Sound & Vibration, 2012, 331(1):41-52.
[10]  JUNG J H, YOON H S, LEE C Y, et al. Effect of the vertical baffle height on the liquid sloshing in a three-dimensional rectangular tank[J]. Ocean Engineering, 2012, 44(1):79-89.
[11]  WANG W, PENG Y, ZHOU Y, et al. Liquid sloshing in partly-filled laterally-excited cylindrical tanks equipped with multi baffles[J]. Applied Ocean Research, 2016, 59:543-563.
[12]  YANG Q, JONES V, MCCUE L. Free-surface flow interactions with deformable structures using an SPH-FEM model[J]. Ocean Engineering, 2012, 55(15):136-147.
[13]  MOLIN B, REMY F, ARNAUD G, et al. On the dispersion equation for linear waves traveling through or over dense arrays of vertical cylinders[J]. Applied Ocean Research, 2016, 61:148-155.
[14]  STRAND I M, FALTINSEN O M. Linear sloshing in a 2D rectangular tank with a flexible sidewall[J]. Journal of Fluids & Structures, 2017, 73:70-81.
[15]  FALTINSEN O M, FIROOZKOOHI R, TIMOKHA A N. Steady-state liquid sloshing in a rectangular tank with a slat-type screen in the middle:Quasilinear modal analysis and experiments[J]. Physics of Fluids, 2011, 23(4):1058.
[16]  CHEN Z, ZONG Z, LI H T, et al. An investigation into the pressure on solid walls in 2D sloshing using SPH method[J]. Ocean Engineering, 2013, 59(2):129-141.
[17]  BRAR G S, SINGH S. An experimental and CFD analysis of sloshing in a tanker[J]. Procedia Technology, 2014, 14(4):490-496.
[18]  JIN H, LIU Y, LI H J. Experimental study on sloshing in a tank with an inner horizontal perforated plate[J]. Ocean Engineering, 2014, 82(2):75-84.
[19]  REBOUILLAT S, LIKSONOV D. Fluid-structure interaction in partially filled liquid containers:A comparative review of numerical approaches[J]. Computers & Fluids, 2010, 39(5):739-746.
[20]  HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1):201-225.
[21]  WHITAKER S. Flow in porous media I:A theoretical derivation of Darcy's law[J]. Transport in Porous Media, 1986, 1(1):3-25.
[22]  TAIT M J, EL DAMATTY A A, ISYUMOV N, et al. Numerical flow models to simulate tuned liquid dampers (TLD) with slat screens[J]. Journal of Fluids & Structures, 2005, 20(8):1007-1023.
[23]  ZHAO W, YANG J, HU Z, et al. Hydrodynamics of a 2D vessel including internal sloshing flows[J]. Ocean Engineering, 2014, 84(4):45-53.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133