全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

利他情境对驾驶个体跟驰行为的影响
Effect of altruistic scenarios for individual car-following behavior

DOI: 10.16511/j.cnki.qhdxxb.2018.21.020

Keywords: 交通疏散,跟驰行为,利他情境,驾驶模拟器,
traffic evacuation
,car-following behavior,altruistic scenario,driving simulator

Full-Text   Cite this paper   Add to My Lib

Abstract:

地震灾害情景下的个体跟驰行为会受到利他情境的影响。基于驾驶模拟器,设置利他情境和中性情境两组驾驶任务,在相同的道路驾驶场景中,采集被试个体的跟驰行为数据。选择Gipps模型用于表示个体跟驰行为,采用遗传算法对不同个体的Gipps跟驰模型参数进行标定。对比不同驾驶任务组的标定结果表明:利他情境与中性情境驾驶任务组的组间差异显著;个体执行利他情境驾驶任务时,相比中性情境驾驶任务,驾驶的最大减速度上升、预估前车最大减速度上升、安全距离下降、最大加速度上升;利他情境下个体有意识紧跟前车以达到尽快完成驾驶任务的目的,同时在行驶过程中表现出个体对驾驶安全性有更高的期望。该研究表明:在应急交通疏散过程中,给予个体一定程度的利他情境,可能有助于提高交通疏散整体的安全性能与疏散效率。
Abstract:Individual car-following behavior during earthquakes is affected by the altruistic scenarios. Driving simulator tests were used to observe car-following behavior for various individuals for the same test conditions for altruistic and neutral driving scenarios. The Gipps model was used to model the car-following behavior with a genetic algorithm used to calibrate the parameters in the Gipps car following model for the various individuals. The tests were then used to compare the model parameters from the two driving task groups, which showed a significant difference between the altruistic and neutral groups. The altruistic group had higher maximum deceleration rates, higher estimates of the maximum deceleration rate of the car in front of them, shorter safety distances and higher maximum acceleration rates than the neutral group. The results show that the altruistic individuals tend to follow closer to the car in front of them with more expectations for driving safety. This study shows that during emergency traffic evacuations, altruistic drivers will exhibit improved driving performance and safety.

References

[1]  SAIFUZZAMAN M, ZHENG Z, HAQUE M M, et al. Revisiting the task-capability interface model for incorporating human factors into car-following models[J]. Transportation Research Part B Methodological, 2015, 82:1-19.
[2]  HAO W, WEI W, JUN C, et al. Using trajectory data to analyze intradriver heterogeneity in car-following[J]. Transportation Research Record Journal of the Transportation Research Board, 2011, 13(2188):85-95.
[3]  QUARANTELLI E L. The nature and conditions of panic[J]. American Journal of Sociology, 1954, 60(3):267-275.
[4]  HU H, WEI H, LIU X M, et al. Car-following model featured with factors reflecting emergency evacuation situation[J]. Journal of Southeast University (English Edition). 24(2), 216-221.
[5]  NI D H. Challenges and strategies of transportation modelling and simulation under extreme conditions[J]. International Journal of Emergency Management, 2006, 3(4):298-312.
[6]  XU Z, YANG X K, ZHAO X H, et al. Differences in driving characteristics between normal and emergency situations and model of car-following behavior[J]. Journal of Transportation Engineering, 2012, 138(11):1303-1313.
[7]  CHIABAUT N, LECLERCQ L, BUISSON C M. From heterogeneous drivers to macroscopic patterns in congestion[J]. Transportation Research Part B Methodological, 2010, 44(2):299-308.
[8]  CIUFFO B, PUNZO V, TORRIERI V. Comparison of simulation-Based and model-based calibrations of traffic-flow microsimulation models[J]. Transportation Research Record, 2009, 2088(2088):36-44.
[9]  Gipps P G. A behavioural car-following model for computer simulation[J]. Transportation Research Part B, 1981, 15(2):105-111.
[10]  PUNZO V, CIUFFO B, MONTANINO M. Can results of car-following model calibration based on trajectory data be trusted[J]. Transportation Research Record Journal of the Transportation Research Board, 2012, 2315(2315):11-24.
[11]  KIM I, KIM T, SOHN K. Identifying driver heterogeneity in car-following based on a random coefficient model[J]. Transportation Research Part C Emerging Technologies, 2013, 36(11):35-44.
[12]  CIUFFO B, PUNZO V, MONTANINO M. The calibration of traffic simulation models:Report on the assessment of different goodness of fit measures and optimization algorithms[EB/OL].(2012-04-17)[2018-04-11].http://publications.jrc.ec.europa.eu/repository/handle/JRC68403.
[13]  PUNZO V, SIMONELLI F. Analysis and comparison of microscopic traffic flow models with real traffic microscopic data[J]. Transportation Research Record Journal of the Transportation Research Board, 2005, 1934(1):53-63.
[14]  OSSEN S, HOOGENDOORN S. Heterogeneity in car-following behavior:Theory and empirics[J]. Transportation Research Part C Emerging Technologies, 2011, 19(2):182-195.
[15]  KESTING A, TREIBER M. Calibrating car-following models using trajectory data:Methodological study[J]. Transportation Research Record, 2008, 2088(2088):148-156.
[16]  VASCONCELOS L, NETO L, SANTOS S, et al. Calibration of the Gipps car-following model using trajectory data[J]. Transportation Research Procedia, 2014, 3(9):952-961.
[17]  KANAGARAJ V, ASAITHAMBI G, KUMAR C H N, et al. Evaluation of different vehicle following models under mixed traffic conditions[J]. Procedia-Social and Behavioral Sciences, 2013, 104(104):390-401.
[18]  HAMDAR S H. Towards modeling driver behavior under extreme conditions[D]. Washington:George Washington University, 2004.
[19]  胡红, 刘小明, 杨孝宽. 基于最小安全间距的应急交通疏散车辆跟驰模型[J]. 北京工业大学学报, 2007, 33(10):1070-1074. HU H, LIU X M, YANG X K. A car-following model of emergency evacuation based on minimum safety distance[J]. Journal of Beijing University of Technology, 2007,33(10):1070-1074. (in Chinese)
[20]  高坤, 涂辉招, 时恒,等. 雾霾天气低能见度对不同跟驰状态驾驶行为的影响[J]. 吉林大学学报(工), 2017(6):1716-1727. GAO K, TU H Z, SHI H, et al. Effect of low visibility in haze weather condition on longitudinal driving behavior in different car-following stages[J]. Journal of Jilin University (Engineering and Technology Edition), 2017(6):1716-1727. (in Chinese)
[21]  SáNCHEZ M, LóPEZ-MOSQUERA N, LERA-LóPEZ F, et al. An extended planned behavior model to explain the willingness to pay to reduce noise pollution in road transportation[J]. Journal of Cleaner Production, 2018, 177:144-154.
[22]  LI L, CHEN X Q, ZHANG L. A global optimization algorithm for trajectory data based car-following model calibration[J]. Transportation Research Part C Emerging Technologies, 2016, 68:311-332.
[23]  HASAN S, MESA-ARANGO R, UKKUSURI S. A random-parameter hazard-based model to understand household evacuation timing behavior[J]. Transportation Research Part C Emerging Technologies, 2013, 27(2):108-116.
[24]  TREIBER M, KESTING A. Microscopic calibration and validation of car-following models-a systematic approach[J]. Procedia-Social and Behavioral Sciences, 2013, 80:922-939.
[25]  TU H Z, TAMMINGA G, DROLENGA H, et al. Evacuation plan of the city of almere:Simulating the impact of driving behavior on evacuation clearance time[J]. Procedia Engineering, 2010, 3(2):67-75.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133