|
- 2015
确定旋转放疗设备等中心点的平均矢量算法
|
Abstract:
对于旋转放射治疗设备, 其等中心点位置对治疗精度存在重要影响。针对设备负载引起的机械结构变形对等中心误差的影响, 提出了一种确定旋转放疗设备等中心点的平均矢量算法。以等中心点位置为优化变量, 通过限定等中心点与不同位置射线向量的最大距离建立约束条件, 以满足约束条件的等中心点与射线向量的平均距离为目标函数, 得到最优等中心点位置和等中心包络线。 实例分析验证了平均矢量算法的正确性和有效性。平均矢量法与矢量法得出的等中心包络线半径均为0.311 mm, 比节点法降低约15.5%; 平均矢量法给出的等中心点距各射线向量的平均距离为0.206 mm, 比矢量法降低约11.2%, 比节点法降低约28%。
Abstract:The isocentric accuracy of rotated radiotherapy equipment significantly influences the treatment accuracy. The average vector method is used to find the optimal isocenter considering the mechanical deformation of the rotated radiotherapy equipment. The maximum distance between the isocenter which is treated as the optimization variable and the ray vectors is considered as a constraint. An objective function is then designed to calculate the average distance between the isocenter that meets the constraint and the ray vectors. Finally, the location of the optimal isocenter and the isocentric envelop are obtained. A test with this method gives the radius of the isocentric envelop as 0.311 mm which is equal to that given by the vector-end-effector method, and about 15.5% less than that given by the point-end-effector method. The results also show that the average distance between the optimal isocenter and the ray vectors is 0.206 mm, about 11.2% less than that by the vector-end-effector method and 28% less than that by the point-end-effector method.
[1] | 黄嘉华. 放疗设备等中心精度分析与对策[J]. 上海生物医学工程, 2003, 24(1): 10-13.HUA Jiahua. Isocenter rotation resolution analysis and technique of radiotherapy equipment [J].Journal of Shanghai Biomedical Engineering Society, 2003, 24(1): 10-13. (in Chinese) |
[2] | 胡杰, 陶建民, 孙光荣, 等. 直线加速器等中心的质量保证和质量控制[J]. 中国医疗器械杂志, 2007, 31(3): 213-215.HU Jie, TAO Jianmin, SUN Guangrong, et al. Quality assurance and quality control of accelerator isocenter [J]. Chinese Medical Journal, 2007, 31(3): 213-215. (in Chinese) |
[3] | 刘丕福, 钟毓斌. 等中心放射治疗技术[J]. 中日友好医院学报, 1988, 2(2): 111-114.LIU Pifu, ZHONG Yubin. Isocentric radiation therapy technology [J]. Journal of China-Japan Friendship Hospital, 1988, 2(2): 111-114. (in Chinese) |
[4] | DU Weiliang, GAO Song, WANG Xiaochun, et al. Quantifying the gantry sag on linear accelerators and introducing an MLC-based compensation strategy [J]. Med Phys, 2012, 39(4): 2156-2162. |
[5] | DU Weiliang, GAO Song. Measuring the wobble of radiation field centers during gantry rotation and collimator movement on a linear accelerator [J]. Med Phys, 2011, 38(8): 4575-4578. |
[6] | Gonzalez A, Castro I, Martinez J A. A procedure to determine the radiation isocenter size in a linear accelerator [J]. Med Phys, 2004, 31(6): 1489-1493. |
[7] | Tsai J S, Curran B H, Sternick E S, et al. The measurement of linear accelerator isocenter motion using a three-micometer device and an adjustable pointer [J]. Int J Radiat Oncol Biol Phys, 1996, 34(1): 189-195. |
[8] | Skworcow P, Mills J A, Haas O C, et al. A new approach to quantify the mechanical and radiation isocentres of radiotherapy treatment machine gantries [J]. Phys Med Biol, 2007, 52(23): 7109-7124. |
[9] | Rosca F, Lorenz F, Hacker F L, et al. An MLC-based linac QA procedure for the characterization of radiation isocenter and room laser's position [J]. Med Phys, 2006, 33(6): 1780-1787. |
[10] | 胡逸民. 肿瘤放射物理[M]. 北京: 原子能出版社, 1999.HU Yimin. Radiation Oncology Physics [M]. Beijing: Atomic Energy Press, 1999.(in Chinese) |
[11] | 李少林, 吴永忠. 肿瘤放射治疗学[M]. 北京: 科学出版社, 2013: 1-3.LI Shaolin, WU Yongzhong. Tumor Radiation Therapy [M]. Beijing: Science Press, 2013: 1-3. (in Chinese) |
[12] | 顾本广. 医用加速器[M]. 北京: 科学出版社, 2003: 341-356.GU Benguang. Medical Accelerator [M]. Beijing: Science Press, 2003: 341-356. (in Chinese) |
[13] | Riis H L, Zimmermann S J, Hjelm-Hansen M. Gantry and isocenter displacements of a linear accelerator caused by an add-on micromutileaf collimator [J]. Med Phys, 2013, 40(3): 031707-1-031707-9. |