全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

超临界压力CO2竖直管内传热恶化抑制实验
Experimental study on the inhibition of heat transfer deterioration of supercritical pressure CO2

DOI: 10.16511/j.cnki.qhdxxb.2018.25.046

Keywords: 传热恶化抑制,超临界压力CO2,
inhibition of heat transfer deterioration
,supercritical pressure CO2

Full-Text   Cite this paper   Add to My Lib

Abstract:

为抑制浮升力导致的超临界压力流体传热恶化,该文采用光管内插螺旋结构,增强管内湍流发展,提高流体管内换热性能。对超临界压力CO2在竖直光管、内插螺旋管内对流换热进行了实验研究,比较了热流密度、进口Re、流动方向等因素对换热的影响,讨论了内插螺旋结构对传热恶化现象的抑制作用。研究结果表明:由于浮升力传热恶化作用,流体在光管内向上流动壁温分布呈非线性变化趋势,壁温峰值区域随热流密度升高逐渐向入口区域移动;光管内插入螺旋结构可以有效抑制由浮升力产生的传热恶化作用,显著提高超临界压力CO2管内对流换热强度,内插螺旋结构管相对于光管可以提高对流换热系数约200%以上;超临界压力CO2在内插螺旋结构管内流动与换热时,在热流密度较高情况下,浮升力依然会对换热起到一定的恶化作用,流体向下流动时沿程对流换热系数略高于向上流动。
Abstract:The heat transfer can deteriorate with supercritical pressure fluids flowing in vertical tubes due to buoyancy. This study used a helical insert in the tube to change the flow structure and improve fluid heat transfer. Convection heat transfer of supercritical pressure CO2 in a vertical bare tube and with a helical insert was investigated experimentally to identify the effects of the heat flux, inlet Re, and flow direction on the heat transfer for both cases. The wall temperature distribution is nonlinear due to the buoyancy effect with the peak wall temperature gradually moving towards the entrance as the heat flux increases. The helical structure inserted into the bare tube effectively suppresses the heat transfer deterioration caused by the buoyancy effect and significantly increases the convective heat transfer the supercritical pressure CO2 in vertical tubes. The buoyancy effect can still reduce the heat transfer with supercritical pressure CO2 upward flow even with the helical insert structure for high heat fluxes.

References

[1]  黄彦平, 王俊峰. 超临界二氧化碳在核反应堆系统中的应用[J]. 核动力工程, 2012, 33(3):21-27. HUANG Y P, WANG J F. Applications of supercritical carbon dioxide in nuclear reactor system[J]. Nuclear Power Engineering, 2012, 33(3):22-27. (in Chinese)
[2]  赵新宝, 鲁金涛, 袁勇, 等. 超临界二氧化碳布雷顿循环在发电机组中的应用和关键热端部件选材分析[J]. 中国电机工程学报, 2016, 36(1):154-162. ZHAO X B, LU J T, YUAN Y, et al. Analysis of supercritical carbon dioxide Brayton cycle and candidate materials of key hot components for power plants[J]. Proceedings of the CSEE, 2016, 36(1):154-162. (in Chinese)
[3]  NEISES T, TURCHI C. A comparison of supercritical carbon dioxide power cycle configurations with an emphasis on CSP applications[J]. Energy Procedia, 2014, 49:1187-1196.
[4]  HALL W B, JACKSON J D. Laminarisation of a turbulent pipe flow by buoyancy forces[C]//11th National Heat Transfer Conference. ASME Paper, 1969, No. 69-HT-55.
[5]  MCELIGOT D M, JACKSON J D. "Deterioration" criteria for convective heat transfer in gas flow through non-circular ducts[J]. Nuclear Engineering and Design, 2004, 232(3):327-333.
[6]  WANG J G, LI H X, GUO B, et al. Investigation of forced convection heat transfer of supercritical pressure water in a vertically upward internally ribbed tube[J]. Nuclear Engineering and Design, 2009, 239(10):1956-1964.
[7]  LI Z H, WU Y X, TANG G L, et al. Numerical analysis of buoyancy effect and heat transfer enhancement in flow of supercritical water through internally ribbed tubes[J]. Applied Thermal Engineering, 2016, 98:1080-1090.
[8]  HEJZLAR P, DOSTAL V, DRISCOLL M J, et al. Assessment of gas cooled fast reactor with indirect supercritical CO<sub>2</sub> cycle[J]. Nuclear Engineering and Technology, 2006, 38(2):109-118.
[9]  JIANG P X, ZHANG Y, ZHAO C R, et al. Convection heat transfer of CO<sub>2</sub> at supercritical pressures in a vertical mini tube at relatively low reynolds numbers[J]. Experimental Thermal and Fluid Science, 2008, 32(8):1628-1637.
[10]  JIANG P X, ZHANG Y, SHI R F. Experimental and numerical investigation of convection heat transfer of CO<sub>2</sub> at supercritical pressures in a vertical mini-tube[J]. International Journal of Heat and Mass Transfer, 2008, 51(11-12):3052-3056.
[11]  LI H Z, WANG H J, LUO Y S, et al. Experimental investigation on heat transfer from a heated rod with a helically wrapped wire inside a square vertical channel to water at supercritical pressures[J]. Nuclear Engineering and Design, 2009, 239(10):2004-2012.
[12]  JIANG P X, LIU B, ZHAO C R, et al. Convection heat transfer of supercritical pressure carbon dioxide in a vertical micro tube from transition to turbulent flow regime[J]. International Journal of Heat and Mass Transfer, 2013, 56(1-2):741-749.
[13]  王飞, 杨珏, 顾汉洋, 等. 垂直管内超临界水传热实验研究[J]. 原子能科学技术, 2013, 47(6):933-939. WANG F, YANG Y, GU H Y, et al. Experimental research on heat transfer performance of supercritical water in vertical tube[J]. Atomic Energy Science and Technology, 2013, 47(6):933-939. (in Chinese)
[14]  ANKUDINOV V B, KURGANOV V A. Intensification of deteriorated heat transfer in heated tubes at supercritical pressures[J]. High Temperature, 1981, 19(6):870-874.
[15]  BAE Y Y, KIM H Y, YOO T H. Effect of a helical wire on mixed convection heat transfer to carbon dioxide in a vertical circular tube at supercritical pressures[J]. International Journal of Heat and Fluid Flow, 2011, 32(1):340-351.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133