全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于高层信息特征的重叠语音检测
Overlapping speech detection using high-level information features

DOI: 10.16511/j.cnki.qhdxxb.2017.21.015

Keywords: 重叠语音检测,高层信息特征,说话人分割,
overlapping speech detection
,high-level information feature,speaker segmentation

Full-Text   Cite this paper   Add to My Lib

Abstract:

重叠语音是影响说话人分割性能的主要因素之一。该文提出了基于语音高层信息特征的重叠语音检测方法以提高说话人分割效果。首先用通用背景模型(universal background model,UBM)提取语音的语言学高层信息特征,并融合这些特征和Mel频率倒谱系数(Mel frequency cepstral coefficient,MFCC)特征建立隐Markov模型(hidden Markov model,HMM)检测重叠语音,然后对处理后的语音进行说话人分割。实验结果表明:对于由TIMIT语音库生成的数据集,该方法对重叠语音检测的错误率比单一采用MFCC特征有显著降低,而且说话人分割性能有明显的提高。
Abstract:Overlapping speech is one of the main factors influencing the performance of speaker segmentation. This paper presents an overlapping speech detection method using a high-level information feature to improve the speaker segmentation results. A linguistic high-level information feature of the speech is extracted using the universal background model (UBM). Then, a hidden Markov model (HMM) is trained using the Mel frequency cepstral coefficients (MFCC) and the high-level information to detect overlapping speech. The result is then used for the speaker segmentation of the pre-processed speech. Tests on a dataset generated from the TIMIT database show that the error ratio for overlapping speech detection is significantly lower than the reference method using just the MFCC feature. The speaker segmentation is also significantly improved.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133