全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

LTP协议数据传输轮次
Number of round trips in LTP data block transmissions

DOI: 10.16511/j.cnki.qhdxxb.2015.21.012

Keywords: Licklider传输协议,延迟分析,传输轮次,
Licklider transmission protocol(LTP)
,delay evaluation,number of round trip

Full-Text   Cite this paper   Add to My Lib

Abstract:

Licklider协议(Licklider transmission protocol, LTP)是一种主要应用于空间网络的点到点传输协议,可用于空间网络相邻节点间的数据传输。LTP可靠传输通过返回确认和重传实现。空间网络节点间距离长,多个往返轮次的确认和重传过程造成极大的传输延迟。该文给出了一种传输轮次的形式化分析方法,其结果包含传输轮次的分布函数、期望和方差。另外提供了一种基于上下界的方法,给出了形式非常简洁的结论,其结果包含轮次期望的上下界和近似值。然后通过典型例子的仿真计算和比较验证了相关结论。
Abstract:The Licklider transmission protocol(LTP) is a point-to-point protocol that is mainly used to transmit data between adjacent nodes in space networks. LTP achieves reliability by return acknowledgements and retransmissions. Typical applications have long distances between network nodes which result in large transmission delays. This delay is further multiplied by the acknowledgement and retransmission processes. Thus, the number of round trips(QoRT) needed to successfully transmit an LTP block needs to be investigated. This paper presents an analytical evaluation of the QoRT that gives the distribution function, mean and variance of the QoRT. The results also give more concise upper bounds, lower bounds and approximate means. Simulations verify the theoretical results.

References

[1]  Wang R, Burleigh S C, Parikh P, et al. Licklider transmission protocol(LTP)-based DTN for cislunar communications[J]. IEEE/ACM Trans Networking, 2011, 19(2):359-368.
[2]  Durst R C, Feighery P D, Scott K L. Why not use the standard internet suite for the interplanetary internet[R/OL].[2015-04-26]. http://www.ipnsig.org/reports/TCP_IP.pdf.
[3]  Cerf V, Burleigh S, Hooke A, et al. Delay-tolerant networking architecture[R/OL].[2015-04-26]. http://tools.ietf.org/html/rfc4838.html.
[4]  Burleigh S, Ramadas M, Farrell S. Licklider Transmission Protocol-Motivation[R/OL].[2015-04-26]. http://tools.ietf.org/html/rfc5325.html.
[5]  Sun X, Yu Q, Wang R, et al. Performance of DTN protocols in space communications[J]. Wireless networks, 2013, 19(8):2029-2047.
[6]  Wang R, Reshamwala A, Zhang Q, et al. The effect of "window size" on throughput performance of DTN in lossy cislunar communications[C]//ICC 2012. Piscataway, NJ, USA:IEEE Press, 2012:68-72.
[7]  Yang Z, Wang R, Yu Q, et al. Analytical characterization of licklider transmission protocol(LTP) in cislunar communications[J]. IEEE Trans Aerospace and Electronic Systems, 2014, 50(3):2019-2031.
[8]  Bezirgiannidis N, Tsaoussidis V. Packet size and DTN transport service:Evaluation on a DTN testbed[C]//ICUMT 2010. Moscow, Russia:IEEE Press, 2010:1198-1205.
[9]  Anagnostou M E, Protonotarios E N. Performance analysis of the selective repeat ARQ protocol[J]. IEEE Trans Communications, 1986, 34(2):127-135.
[10]  Zorzi M, Rao R R. Bounds on the throughput performance of ARQ selective-repeat protocol in Markov channels[C]//ICC 1996. Piscataway, NJ, USA:IEEE Press, 1996:782-786.
[11]  Badia L. A Markov analysis of selective repeat ARQ with variable round trip time[J]. IEEE Communications Letters, 2013, 17(11):2184-2187.
[12]  Ausavapattanakun K, Nosratinia A. Throughput analysis of selective repeat ARQ in fading wireless channels[C]//Proc of 39th Asilomar Conference on Signals, Systems and Computers. Piscataway, NJ, USA:IEEE Press, 2005:41-45.
[13]  董扬威. 基于DTN的空间网络互连及其服务质量的研究[D].北京:清华大学, 2015. DONG Yangwei. Research on DTN based Space Internetworking and Its Quality of Service[D]. Beijing:Tsinghua University, 2015.(in chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133