全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

基于开项集剪枝的常量条件函数依赖挖掘
Mining of constant conditional functional dependencies based on pruning free itemsets

DOI: 10.16511/j.cnki.qhdxxb.2016.21.026

Keywords: 条件函数依赖,函数依赖,开项集,闭项集,剪枝,
conditional functional dependency
,functional dependency,free itemset,closed itemset,pruning algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了减小常量条件函数依赖的搜索空间, 提高挖掘效率, 针对常量条件函数依赖挖掘算法CFDMiner, 提出了一系列剪枝优化策略。理论研究发现, CFDMiner的输入——关系数据的全部开项集和闭项集对产生有效的常量条件函数依赖仍然存在很多无效、冗余的项集。从理论上证明了通过合理剪枝, 选取开项集的子集与对应的闭项集, 能够得到与原算法一致的结果。实验表明: 相比原始算法CFDMiner, 优化后的算法搜索空间更小, 实际数据集上平均挖掘效率提高4~5倍。
Abstract:The search space for discovering constant conditional functional dependencies (CCFDs) is reduced and the efficiency is improved by a series of pruning strategies that optimize the algorithm CFDMiner, which is a popular algorithm for mining CCFDs. Theoretical studies show many invalid and redundant free and closed itemsets for outputting valid CCFDs. Thus, pruning of free itemsets and selecting of corresponding closed itemsets can generate as consistent results as the original algorithm. Tests show that the optimized algorithm has a smaller search space and its efficiency is improved 4~5 fold on true data.

References

[1]  Fan W, Geerts F, Li J, et al. Discovering conditional functional dependencies[J]. IEEE Transactions on Knowledge & Data Engineering, 2011, 23(5):683-698.
[2]  Li H, Li J, Wong L, et al. Relative risk and odds ratio:A data mining perspective[C]//Proceedings of 24th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2005. Baltimore, MA, USA:ACM, 2005:368-377.
[3]  Fei C, Miller R J. Discovering data quality rules[C]//Proceedings of 34th International Conference on Very Large Data Bases. Auckland, New Zealand:VLDB Endowment, ACM, 2008:1166-1177.
[4]  Fan W. Dependencies revisited for improving data quality[C]//Proceedings of 27th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2008. Vancouver, BC, Canada:ACM, 2008:159-170.
[5]  Fan W, Geerts F, Lakshmanan L V S, et al. Discovering conditional functional dependencies[C]//Proceedings of the 25th International Conference on Data Engineering (ICDE). Shanghai, China:IEEE, 2009:1231-1234.
[6]  Fan W, Geerts F. Foundations of data quality management[M]. San Rafael, CA, USA. Morgan & Claypool, 2012.
[7]  Goethals B, Zaki M J. Frequent itemset mining implementations[C]//Proceedings of the ICDM 2003 Workshop on Frequent Itemset Mining Implementations. Melbourne, FL, USA:IEEE, 2003:1-13.
[8]  Pasquier N, Pasquier N, Bastide Y. Discovering frequent closed itemsets for association rules[J]. Lecture Notes in Computer Science, 2000,1540:398-416.
[9]  Wang J, Han J, Pei J. CLOSET+:Searching for the best strategies for mining frequent closed itemsets[C]//Proceedings of 9th International Conference on Knowledge Discovery and Data Mining. Washington, DC, USA:ACM, 2003:236-245.
[10]  Zaki M J. Mining Non-redundant association rules[J]. Data Mining & Knowledge Discovery, 2004, 9(3):223-248.
[11]  Li J, Li H, Wong L, et al. Minimum description length principle:generators are preferable to closed patterns[C]//Proceedings of 21st AAAI Conference on Artificial Intelligence and 18th Innovative Applications of Artificial Intelligence Conference. Las Vegas, NE, USA, 2006:409-414.
[12]  Diallo T, Novelli N, Petit J M. Discovering (frequent) constant conditional functional dependencies[J]. International Journal of Data Mining, Modelling and Management, 2012, 4(3):205-223.
[13]  Fan W, Geerts F, Jia X, et al. Conditional functional dependencies for capturing data inconsistencies[J]. ACM Transactions on Database Systems, 2008, 33(2):1-48.
[14]  刘波, 耿寅荣. 数据质量检测规则挖掘方法[J]. 模式识别与人工智能, 2012, 25(5):835-844. LIU Bo, GENG Yinrong. Mining method for data quality detection rules[J]. Pattern Recognition and Artificial Intelligence, 2012, 25(5):835-844. (in Chinese)
[15]  Golab L, Karloff H, Korn F, et al. On generating near-optimal tableaux for conditional functional dependencies[C]//Proceedings of 34th International Conference on Very Large Data Bases. Auckland, New Zealand:VLDB Endowment, ACM, 2008:376-390.
[16]  Agrawal R. Fast algorithms for mining association rules[C]//Proceedings of 20th International Conference on Very Large Data Bases. Santiago, Chile:ACM, 1994:487-499.
[17]  Calders T, Goethals B. Non-derivable Itemset Mining[J]. Data Mining & Knowledge Discovery, 2007, 14(1):171-206.
[18]  Li J, Liu G, Wong L. Mining statistically important equivalence classes and delta-discriminative emerging patterns[C]//Proceedings of 13th SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, CA, USA:ACM, 2007:430-439.
[19]  Li J, Liu J, Toivonen H, et al. Effective pruning for the discovery of conditional functional dependencies[J]. The Computer Journal, 2013, 56(3):378-392.
[20]  Tran A, Truong T, Le B. Simultaneous mining of frequent closed itemsets and their generators:Foundation and algorithm[J]. Engineering Applications of Artificial Intelligence, 2014, 36:64-80.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133