|
- 2017
面向高通量应用的众核处理器任务调度
|
Abstract:
具有高通量特征的大数据应用已成为目前数据中心的主流应用,这些应用在传统处理器平台上的运行效率不高,原因之一是任务调度的低效。针对高通量应用的一些典型特征以及现有任务窃取算法的不足,该文提出一种程序行为和环境感知的任务调度机制,通过软硬件结合实现了处理器核的分区管理和任务的分级调度,减小了不同应用之间因争用共享资源对性能产生的不利影响,同时利用线程相似度高的特点提高指令缓存的命中率,从而提升系统的整体吞吐率。初步的模拟评估表明:该算法在混合负载情况下性能明显优于现有算法的,在测试的混合负载中平均优于现有算法20%。
Abstract:Big data applications with high-volume throughputs have become the most common applications in datacenters. The efficiencies of these applications running on traditional processors are very low for various reasons, one of which is the low-efficiency task scheduling. This paper presents a task scheduling framework that identifies program behavior and the running environment and then partitions the cores with hierarchical task scheduling though hardware and software co-design to reduce the negative effect of shared resource contention and improving the instruction cache hit rate using thread similarity. Tests show this algorithm improves performance by 20% on average over the legacy work-stealing scheduling algorithm.