|
- 2015
四组分汽油替代燃料的化学动力学模型
|
Abstract:
该文通过反应路径分析和灵敏度分析, 发展了甲苯氧化子机理, 进而构建四组分(异辛烷、正庚烷、甲苯、乙醇)汽油替代燃料的化学动力学模型。该模型包含75个组分和305个基元反应。验证结果表明: 该模型不仅能够准确计算单组分燃料的着火延迟时间、火焰传播速度和火焰结构, 而且在一定的压强和温度范围内, 能够较准确地计算多组分汽油替代燃料的着火延迟时间, 反映不同辛烷值汽油的自燃特性。该文提出的四组分汽油替代燃料动力学模型包含较少的组分数与基元反应数, 更有利于在汽油燃烧的多维计算流体动力学(CFD)模拟中得到应用。
Abstract:The sub-mechanism of toluene oxidation was identified using path and sensitivity analyses. A chemical kinetics mechanism for a four-component gasoline surrogate fuel made of iso-octane/n-heptane/ethanol/toluene includes 75 species and 305 elementary reactions. The validated results show that the mechanism gives good agreement with experimental data for the pure fuel ignition delay time, laminar flame speed, and chemical structure predictions. The model also predicts the ignition delay time of multi-component gasoline surrogate fuels in the specified pressure and temperature range and reproduces the auto-ignition characteristics of different research octane number (RON) gasoline fuels. Since this chemical kinetics model has few species and few reactions, the mechanism can be used in multidimensional, computational fluid dynamics (CFD) simulations of the gasoline combustion.
[1] | Pera C, Knop V. Methodology to define gasoline surrogates dedicated to auto-ignition in engines [J]. Fuel, 2012, 96: 59-69. |
[2] | Curran H J, Gaffuri P, Pitz W J, et al. A comprehensive modeling study of iso-octane oxidation [J]. Combustion and Flame, 2002, 129(3): 253-280. |
[3] | Curran H J, Pitz W J, Westbrook C K, et al. Oxidation of automotive primary reference fuels at elevated pressures [J]. Symposium (International) on Combustion, 1998, 27(1): 379-387. |
[4] | Andrae J C G, Brinck T, Kalghatgi G T. HCCI experiments with toluene reference fuels modeled by a semidetailed chemical kinetic model [J]. Combustion and Flame, 2008, 155(4): 696-712. |
[5] | Sakai Y, Miyoshi A, Koshi M, et al. A kinetic modeling study on the oxidation of primary reference fuel-toluene mixtures including cross reactions between aromatics and aliphatics [J]. Proceedings of the Combustion Institute, 2009, 32(1): 411-418. |
[6] | 张庆峰, 郑朝蕾, 何祖威, 等. 适用于HCCI燃烧研究的甲苯参比燃料化学动力学简化模型[J]. 物理化学学报, 2011, 27(3): 530-538. (in English) ZHANG Qingfeng, ZHENG Zhaolei, HE Zuwei, et al. Reduced chemical kinetic model of toluene reference fuels for HCCI combustion [J]. Acta Phys-Chim Sin, 2011, 27(3): 530-538. |
[7] | Andrae J C G. Development of a detailed kinetic model for gasoline surrogate fuels [J]. Fuel, 2008, 87(10/11): 2013-2022. |
[8] | Fikri M, Herzler J, Starke R, et al. Autoignition of gasoline surrogates mixtures at intermediate temperatures and high pressures [J]. Combustion and Flame, 2008, 152(1/2): 276-281. |
[9] | 郑东, 钟北京. 异辛烷/正庚烷/乙醇三组分燃料着火的化学动力学模型 [J]. 物理化学学报, 2012, 28(9): 2029-2036.ZHENG Dong, ZHONG Beijing. Chemical kinetic model for ignition of three-component comprising iso-octane/n-heptane/ethanol fuel [J]. Acta Phys-Chim Sin, 2012, 28(9): 2029-2036. (in Chinese) |
[10] | Marinov N M. A detailed chemical kinetic model for high temperature ethanol oxidation [J]. International Journal of Chemical Kinetics, 1999, 31(3): 183-220. |
[11] | Ranzi E, Faravelli T, Gaffuri P, et al. A wide-range modeling study of iso-octane oxidation [J]. Combustion and Flame, 1997, 108(1/2): 24-42. |
[12] | Jia M, Xie M. A chemical kinetics model of iso-octane oxidation for HCCI engines [J]. Fuel, 2006, 85(17/18): 2593-2604. |
[13] | Tanaka S, Ayala F, Keck J C. A reduced chemical kinetic model for HCCI combustion of primary reference fuels in a rapid compression machine [J]. Combustion and Flame, 2003, 133(4): 467-481. |
[14] | Andrae J C G, Head R A. HCCI experiments with gasoline surrogate fuels modeled by a semidetailed chemical kinetic model [J]. Combustion and Flame, 2009, 156(4): 842-851. |
[15] | 张庆峰, 郑朝蕾, 何祖威, 等. 适用于HCCI发动机的基础燃料化学动力学模型Ⅱ:构造骨架机理 [J]. 内燃机学报, 2011, 29(2): 133-138.ZHANG Qingfeng, ZHENG Zhaolei, HE Zuwei, et al. A chemical kinetic model of PRF oxidation for HCCI Engine II: Structure of a skeletal model [J]. Transactions of CSICE, 2011, 29(2): 133-138. (in Chinese) |
[16] | Gauthier B M, Davidson D F, Hanson R K. Shock tube determination of ignition delay times in full-blend and surrogate fuel mixtures [J]. Combustion and Flame, 2004, 139(4): 300-311. |
[17] | Cancino L R, Fikri M, Oliveira A A M, et al. Autoignition of gasoline surrogate mixtures at intermediate temperatures and high pressures: Experimental and numerical approaches [J]. Proceedings of the Combustion Institute, 2009, 32(1): 501-508. |
[18] | Zhong B J, Zheng D. Chemical kinetic mechanism of a three-component fuel composed of iso-octane/n-heptane/ethanol [J]. Combustion Science and Technology, 2012, 185(4): 627-644. |
[19] | Kee R J, Rupley F M, Miller J A, et al. CHEMKIN Release 4.1 [M]. San Diego, CA: Reaction Design, 2006. |
[20] | Fieweger K, Blumenthal R, Adomeit G. Self-ignition of S.I. engine model fuels: A shock tube investigation at high pressure [J]. Combustion and Flame, 1997, 109(4): 599-619. |
[21] | Dunphy M P, Simmie J M. High-temperature oxidation of ethanol. Part 1: Ignition delays in shock waves [J]. Journal of the Chemical Society, Faraday Transactions, 1991, 87(11): 1691-1696. |
[22] | Davidson D F, Gauthier B M, Hanson R K. Shock tube ignition measurements of iso-octane/air and toluene/air at high pressures [J]. Proceedings of the Combustion Institute, 2005, 30(1): 1175-1182. |
[23] | Van Lipzig J P J, Nilsson E J K, De Goey L P H, et al. Laminar burning velocities of n-heptane, iso-octane, ethanol and their binary and tertiary mixtures [J]. Fuel, 2011, 90(8): 2773-2781. |
[24] | Davis S G, Wang H, Breinsky K, et al. Laminar flame speeds and oxidation kinetics of benene-air and toluene-air flames [J]. Symposium (International) on Combustion, 1996, 26(1): 1025-1033. |
[25] | Li Y Y, Cai J H, Zhang L D, et al. Investigation on chemical structures of premixed toluene flames at low pressure [J]. Proceedings of the Combustion Institute, 2011, 33(1): 593-600. |
[26] | Ra Y, Reitz R D. A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels [J]. Combustion and Flame, 2008, 155(4): 713-738. |
[27] | Tsurushima T. A new skeletal PRF kinetic model for HCCI combustion [J]. Proceedings of the Combustion Institute, 2009, 32(2): 2835-2841. |
[28] | Pitz W J, Cernansky N P, Dryer F L, et al. Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels [R]. SAE Technical Paper 2007-01-0201. 2007. |
[29] | Lee K, Kim Y, Min K. Development of a reduced chemical kinetic mechanism for a gasoline surrogate for gasoline HCCI combustion [J]. Combustion Theory and Modelling, 2010, 15(1): 107-124. |