全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于大涡模拟的圆管脉动湍流减阻数值分析
Numerical analysis of the drag reduction for turbulent pulsating pipe flows based on large eddy simulations

DOI: 10.16511/j.cnki.qhdxxb.2017.22.029

Keywords: 圆管脉动流,湍流,大涡模拟,减阻,能耗,
pulsating pipe flows
,turbulence,large eddy simulation,drag reduction,energy consumption

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文利用商业软件ANSYS-CFX对圆管中的脉动湍流进行了大涡模拟,分析了脉动流的减阻特性和总能耗。文中的脉动流算例包括稳态流主控和振荡流主控两种流态。结果表明:脉动流通过叠加适合的振荡流来改变稳态流的边界层特性,脉动幅值为5.5时得到最佳减阻率为25%;当脉动流的流态由振荡流主控且振荡流分量的边界层为层流时,减阻效果较好;简单正弦形式脉动流的总能耗高于相应的稳态流。
Abstract:Large eddy simulations were conducted for turbulent pulsating flows using the commercial solver ANSYS-CFX. The drag reduction and the total energy consumption for pulsating flows were analyzed. The simulations included current dominated and wave dominated pulsating flows. The boundary layer characteristics of the current flow were affected by the superposition of the wave flow. The best drag reduction in the pulsating flows gave a 25% drag reduction when the non-dimensional pulsating amplitude was 5.5. The analysis indicates that the drag reduction is optimized when the pulsating flow is wave dominated and the wave boundary layer is laminar. Pulsating flows with simple sinusoidal pulsating patterns consume much more energy than steady flows.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133