全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

邻域密度网格聚类算法及应用
Neighborhood density grid clustering and its applications

DOI: 10.16511/j.cnki.qhdxxb.2018.22.025

Keywords: 聚类,网格划分,邻域,密度,任意形状,区域识别,
clustering
,grid partition,neighborhood,density,arbitrary shape,region recognition

Full-Text   Cite this paper   Add to My Lib

Abstract:

聚类作为数据分析的工具之一,已在模式识别、文献计量及故障诊断等领域中发挥了重要作用。该文基于邻域关系、局部密度和空间网格划分提出了一种聚类方法。该方法主要利用空间网格降低计算复杂度,利用邻域关系在网格空间中以密度为依据搜索聚类元素,并根据最大相对距离和最大相对密度原则自动寻找聚类中心。基于人工数据的实验结果表明,所提邻域密度网格聚类方法可有效处理任意形状数据并自主完成聚类。基于区域识别的对比实验表明,所提方法更适用于处理奇异形状且分布复杂的数据。
Abstract:The clustering data analysis tool plays a significant role in various fields such as pattern recognition, bibliometrics and fault diagnosis. This paper describes a clustering approach based on neighborhood relationships, local densities and spatial grid partitions. The time complexity of this algorithm is reduced using a spatial grid with the clustering elements searched using neighborhood density relationships in the grid space. Cluster centers are then selected automatically using the maximum relative distance and the maximum relative local density. Tests on artificial data indicate that neighborhood density grid clustering can automatically cluster data and effectively process data with arbitrary shapes. Comparisons using regional recognition datasets demonstrate that this method is more suitable for clustering complex data with unusual shapes.

References

[1]  ANKERST M, BREUNIG M M, KRIEGEL H P, et al. OPTICS:Ordering points to identify the clustering structure[J]. ACM SIGMOD Record, 1999, 28(2):49-60.
[2]  RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191):1492-1496.
[3]  MACQUEEN J. Some methods for classification and analysis of multivariate observations[C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley, USA:University of California Press, 1967:281-297.
[4]  PARK H S, JUN C H. A simple and fast algorithm for K-medoids clustering[J]. Expert Systems with Applications, 2009, 36(2):3336-3341.
[5]  JIANG B, PEI J, TAO Y F, et al. Clustering uncertain data based on probability distribution similarity[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(4):751-763.
[6]  ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland, USA, 1996:226-231.
[7]  ZHANG T, RAMAKRISHNAN R, LIVNY M. BIRCH:An efficient data clustering method for very large databases[J]. ACM SIGMOD Record, 1996, 25(2):103-114.
[8]  BEZDEK J C, EHRLICH R, FULL W. FCM:The fuzzy c-means clustering algorithm[J]. Computers & Geosciences, 1984, 10(2-3):191-203.
[9]  BABUKA R, VAN DER VEEN P J, KAYMAK U. Improved covariance estimation for Gustafson-Kessel clustering[C]//Proceedings of the 2002 IEEE International Conference on Fuzzy Systems. Honolulu, USA, 2002:1081-1085.
[10]  BERCHTOLD M, RIEDEL T, DECKER C, et al. Gath-Geva specification and genetic generalization of Takagi-Sugeno-Kang fuzzy models[C]//Proceedings of the 2008 IEEE International Conference on Systems, Man and Cybernetics. Singapore, 2008:595-600.
[11]  WANG W, YANG J, MUNTZ R R. STING:A statistical information grid approach to spatial data mining[C]//Proceedings of the 23rd International Conference on Very Large Data Bases. Athens, Greece:Morgan Kaufmann Publishers, 1997:186-195.
[12]  SHEIKHOLESLAMI G, CHATTERJEE S, ZHANG A D. WaveCluster:A multi-resolution clustering approach for very large spatial databases[C]//Proceedings of the 24th International Conference on Very Large Data Bases. New York, USA:Morgan Kaufmann Publishers, 1998:428-439.
[13]  LIU H P, SUN J, WU H, et al. High resolution sonar image segmentation by PSO based fuzzy cluster method[C]//Proceedings of the 4th International Conference on Genetic and Evolutionary Computing. Shenzhen, China, 2010:18-21.
[14]  XU D K, TIAN Y J. A comprehensive survey of clustering algorithms[J]. Annals of Data Science, 2015, 2(2):165-193.
[15]  MOPSI. Mopsi data:Locations[DB/OL]. (2012-03-07)[2017-12-25]. http://cs.uef.fi/mopsi/data/.
[16]  SUO M L, ZHU B L, ZHOU D, et al. Neighborhood grid clustering and its application in fault diagnosis of satellite power system[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2018. DOI:10.1177/0954410017751991.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133