全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

基于Poisson过程的沿海地区飓风灾害评估
Hurricane damage assessments for coastal areas based on a Poisson model

DOI: 10.16511/j.cnki.qhdxxb.2016.25.017

Keywords: 飓风,灾害评估,Poisson过程,间歇性,概率模型,
hurricanes
,damage assessment,Poisson process,intermittency,probabilistic model

Full-Text   Cite this paper   Add to My Lib

Abstract:

对沿海地区进行飓风灾害评估时,考虑到已有方法中往往忽略飓风发生的间歇性特性,导致分析结果不准确,该文提出了飓风灾害评估的新方法。将飓风发生的随机过程描述为平稳Poisson过程,并在此基础上给出了飓风灾害评估公式。选取美国Miami-Dade县1900-2010年的飓风数据进行分析,并应用该文提出的方法对该县未来50年内的飓风灾害进行评估。结果表明:Poisson过程能够准确刻画飓风发生的随机过程。如果忽略飓风的间歇性特性,会高估飓风灾害的均值和标准差,但低估其变异性。在50年的评估期内,如果忽略飓风的间歇性特性,则飓风灾害的均值和方差分别被高估41.4%和20.05%。
Abstract:Previous hurricane damage assessments for coastal areas have ignored the intermittent nature of hurrucanes. This paper presents an hurricane damage assessment method that accounts for the intermittency. A Poisson model is used in this paper to describe the hurricane stochastic process with explicit formulas for the hurricane damage assessment. Hurricane data for Miami-Dade County, USA, from 1900 to 2010 were used to illustrate the method. The Poisson model provides a reasonable description of the hurricane stochastic characteristics. The mean and the variance of the hurricane damage are overestimated while the coefficient of variance is underestimated if the intermittency is ignored. For example, for a 50-year service period, the mean cumulative hurricane damage is overestimated by 41.4% while the variance is over estimated by 20.05% if the intermittency is ignored.

References

[1]  杨林,曹春荣,林秋,等.台风"苏力"灾害风险与防御行为效益评估[J].气象与环境学报,2015,31(1):106-111.YANG Lin,CAO Chunrong,LIN Qiu,et al.Study on disaster risk of typhoon Soulik and its prevention benefit assessment[J].Journal of Meteorology and Environment,2015,31(1):106-111.(in Chinese)
[2]  Huang Z,Rosowsky D V,Sparks P R.Long-term hurricane risk assessment and expected damage to residential structures[J].Reliability Engineering and System Sa[KG-0.2mm]fety,2001,74:239-249.
[3]  Li Y,Ellingwood B R.Hurricane damage to residential construction in the US:Importance of uncertainty modeling in risk assessment[J].Engineering Structures,2006,28:1009-1018.
[4]  Li Y,Stewart M G.Cyclone damage risks caused by enhanced greenhouse conditions and economic viability of strengthened residential construction[J].Natural Hazard Review,2011,12:9-18.
[5]  Mo H M,Hong H P,Fan F.Estimating the extreme wind speed for regions in China using surface wind observations and reanalysis data[J].Journal of Wind Engineering and Industrial Aerodynamics,2015,143:19-33.
[6]  Klima K,Lin N,Emanuel K,et al.Hurricane modification and adaptation in Miami-Dade county,Florida[J].Environmental Science and Technology,2012,46:636-642.
[7]  Emanuel K.Divine Wind:The History and Science of Hurricanes[M].New York:Oxford University Press,2005.
[8]  Vickery P J,Twisdale L A.Prediction of hurricane wind speed in the United States[J].Journal of Structural Engineering,1995,121(11):1691-1709.
[9]  葛余博.概率论与数理统计[M].北京:清华大学出版社,2005.GE Yubo.Probability and Statistics[M].Beijing:Tsinghua University Press,2005.(in Chinese)
[10]  Stewart M G,Rosowsky D V,Huang Z.Hurricane risks and economic viability of strengthened construction[J].Natural Hazards Review,2003,4:12-19.
[11]  Bjarnadottir S,Li Y,Stewart M G.A probabilistic-based framework for impact and adaptation assessment of climate change on hurricane damage risks and costs[J].Structural Safety,2011,33:173-185.
[12]  Lin N,Emanuel K,Oppenheimer M,et al.Physically based assessment of hurricane surge threat under climate change[J].Nature Climate Change,2012,2(6):462-467.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133