全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 


DOI: 10.3866/PKU.WHXB201606141

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用第一性原理密度泛函计算方法和周期性平板模型系统研究了放射性碘分子在Cu2O三个低指数表面的吸附行为。通过计算若干平衡吸附构型的结构参数和吸附能评估了不同特征吸附位的作用。构型优化计算表明所选晶面存在适度的结构弛豫。计算结果表明,与Cu2O(110)表面相比,Cu2O(100)和(111)晶面表现出更高的碘分子吸附反应活性。其中,表面氧原子位(OS)和配位未饱和铜原子位(CuCUS)分别为Cu2O(100)和(111)晶面的能量最优吸附位点。此外,针对几种典型吸附结构计算分析了其电子结构信息,以进一步阐明吸附体系之间的相互作用机理。
The adsorption behavior of radioiodine (I2) molecules on three different low-index surfaces of cuprous oxide (Cu2O) was systematically investigated using first-principles density functional calculations with periodic slab models. The role of typical surface adsorption sites was evaluated by calculating structural parameters of the adsorption configurations and energy features. Moderate geometry relaxation of the three low-index surfaces was observed. The results of geometry optimization and total energy calculations indicated that the Cu2O(100) and (111) surfaces exhibit higher reactivity towards I2 adsorption than the Cu2O(110) surface. The surface oxygen site (OS) was determined to be the most favorable adsorption site on the Cu2O(100) surface, while the coordinatively unsaturated copper site (CuCUS) was energetically preferred on the Cu2O(111) surface. In addition, the electronic structure information for several typical configurations were explored to explain the detailed interaction mechanism of adsorbed systems

References

[1]  1 Hou X. L. ; Hansen V. ; Aldahan A. ; Possnert G. ; Lind O. C. ; Lujaniene G. Anal. Chim. Acta 2009, 632, 181. doi: 10.1016/j.aca.2008.11.013
[2]  7 Sigen A. ; Zhang Y.W. ; Li Z. P. ; Xia H. ; Xue M. ; Liu X. M. ; Mu Y. Chem. Commun 2014, 50, 8495. doi: 10.1039/c4cc01783h
[3]  11 Lefèvre G. ; Walcarius A. ; Ehrhardt. J. J. ; Bessière J. Langmuir 2000, 16, 4519. doi: 10.1021/la9903999
[4]  18 Islam M. M. ; Diawara B. ; Maurice V. ; Marcus P. J. Mol. Struc.: Theochem 2009, 903, 41. doi: 10.1016/j.theochem.2009.02.037
[5]  32 Kresse G. Phys. Rev. B 1996, 54, 11169. doi: 10.1103/PhysRevB.54.11169
[6]  33 Kresse G. ; Hafner J. J. Phys.: Condens. Matter 1994, 6, 8245. doi: 10.1088/0953-8984/6/40/015
[7]  21 Sun B. Z. ; Chen W. K. ; Xu X. L. Acta Phys. -Chim. Sin 2006, 22, 1126. doi: 10.1016/S1872-1508(06)60052-1
[8]  29 Gattinoni C. ; Michaelides A. Surf. Sci. Rep 2015, 70, 424d. doi: 10.1016/j.surfrep.2015.07.001
[9]  39 Werner A. ; Hochheimer H. D. Phys. Rev. B 1982, 25, 5929. doi: 10.1103/PhysRevB.25.5929
[10]  40 Soon A. ; S?hnel T. ; Idriss H. Surf. Sci 2005, 579, 131d. doi: 10.1016/j.susc.2005.01.038
[11]  5 Aimoz L. ; Taviot-Guého C. ; Churakov S. V. ; Chukalina M. ; D?hn R. ; Curti E. ; Bordet P. ; Vespa M. J. Phys. Chem. C 2012, 116, 5460. doi: 10.1021/jp2119636
[12]  6 Sava D. F. ; Rodriguez M. A. ; Chapman K.W. ; Chupas P. J. ; Greathouse J. A. ; Crozier P. S. ; Nenoff T. M. J. Am. Chem. Soc 2011, 133, 12398. doi: 10.1021/ja204757x
[13]  8 Andryushechkin B. V. ; Zhidomirov G. M. ; Eltsov K. N. ; Hladchanka Y. V. ; Korlyukov A. A. Phys. Rev. B 2009, 80, 125409. doi: 10.1103/PhysRevB.80.125409
[14]  9 Bo A. ; Sarina S. ; Zheng Z. F. ; Yang D. J. ; Liu H.W. ; Zhu H.Y. J. Hazard. Mater 2013, 199, 246. doi: 10.1016/j.jhazmat.2012.12.008
[15]  15 Liu, Y. F.; von Gunten, H. R. Migration Chemistry and Behaviour of Iodine Relevant to Geological Disposal of Radioactive Wastes; Paul Scherrer Institute: Villigen, 1988.
[16]  16 Zheng Z. K. ; Huang B. B. ; Wang Z. Y. ; Guo M. ; Qin X. Y. ; Zhang X. Y. ; Wang P. ; Dai Y. J. Phys. Chem. C 2009, 113, 14448. doi: 10.1021/jp904198d
[17]  17 Musselman K. P. ; Marin A. ; Schmidt-Mende L. ; Macmanus-Driscoll J. L. Adv. Funct. Mater 2012, 22, 2202. doi: 10.1002/adfm.201102263
[18]  20 Le D. ; Stolbov S. ; Rahman T. S. Surf. Sci 2009, 603, 1637d. doi: 10.1016/j.susc.2008.12.039
[19]  孙宝珍; 陈文凯; 徐香兰. 物理化学学报, 2006, 22, 1126. doi: 10.1016/S1872-1508(06)60052-1
[20]  22 Schulz K. H. ; Cox D. F. Phys. Rev. B 1991, 43, 1610. doi: 10.1103/PhysRevB.43.1610
[21]  辜家芳; 陈文凯. 物理化学学报, 2014, 30, 1810. doi: 10.3866/PKU.WHXB201408221
[22]  26 Sebbari K. ; Roques J. ; Simoni E. ; Domain C. ; Perron H. ; Catalette H. Surf. Sci 2012, 606, 1135. doi: 10.1016/j.susc.2012.01.023
[23]  27 Arrouvel C. ; Diawara B. ; Costa D. ; Marcus P. J. Phys. Chem. C 2007, 111, 18164. doi: 10.1021/jp0741408
[24]  28 Bendavid L. I. ; Carter E. A. J. Phys. Chem. B 2013, 117, 15750. doi: 10.1021/jp406454c
[25]  31 Kresse G. ; Hafner J. Phys. Rev. B 1994, 49, 14251. doi: 10.1103/PhysRevB.49.14251
[26]  34 Perdew J. P. ; Wang Y. Phys. Rev. B 1992, 45, 13244. doi: 10.1103/PhysRevB.45.13244
[27]  35 Bl?chl P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/PhysRevB.50.17953
[28]  36 Kresse G. ; Joubert D. Phys. Rev. B 1999, 59, 1758. doi: 10.1103/PhysRevB.59.1758
[29]  37 Ruiz E. ; Alvarez S. ; Alemany P. ; Evarestov R. A. Phys. Rev. B 1997, 56, 7189. doi: 10.1103/PhysRevB.56.7189
[30]  2 Pei C. Y. ; Ben T. ; Xu S. X. ; Qiu S. L. J. Mater. Chem. A 2014, 2, 7179. doi: 10.1039/c4ta00049h
[31]  3 Chapman K.W. ; Chupas P. J. ; Nenoff T. M. J. Am. Chem. Soc 2010, 132, 8897. doi: 10.1021/ja103110y
[32]  4 Hu Q. H. ; Zhao P. H. ; Moran J. E. ; Seaman J. C. J. Contam. Hydrol 2005, 78, 185. doi: 10.1016/j.jconhyd.2005.05.007
[33]  10 Takahiro N. ; Keisuke F. Geochim. Cosmochim. Acta 2010, 74, 6000. doi: 10.1016/j.gca.2010.08.002
[34]  12 Lefèvre G. ; Bessière J. ; Walcarius A. ; Ehrhardt J. J. J. Environ. Radioactivity 2003, 70, 73. doi: 10.1016/S0265-931X(03)00119-X
[35]  13 Zhuang H. E. ; Zeng J. S. ; Zhu L. Y. Radiochim. Acta 1988, 44, 143. doi: 10.1524/ract.1988.4445.1.143
[36]  14 Balsley S. D. ; Brady P. V. ; Krumhansl J. L. ; Anderson H. L. Environ. Sci. Technol 1996, 30, 3025. doi: 10.1021/es960083c
[37]  19 Islam M. M. ; Diawara B. ; Maurice V. ; Marcus P. Surf. Sci 2009, 603, 2087. doi: 10.1016/j.susc.2009.04.005
[38]  23 Kremleva A. ; Krüger S. ; R?sch N. Radiochim. Acta 2010, 98, 635. doi: 10.1524/ract.2010.1764
[39]  24 Kremleva A. ; Krüger S. ; R?sch N. Geochim. Cosmochim. Acta 2011, 75, 706. doi: 10.1016/j.gca.2010.10.019
[40]  25 Gu J. F. ; Chen W. K. Acta Phys. -Chim. Sin 2014, 30, 1810. doi: 10.3866/PKU.WHXB201408221
[41]  30 Kresse G. ; Hafner J. Phys. Rev. B 1993, 47, 558. doi: 10.1103/PhysRevB.47.558
[42]  38 Soon A. ; Todorova M. ; Delley B. ; Stampfl C. Phys. Rev. B 2007, 75, 125420. doi: 10.1103/PhysRevB.75.125420
[43]  41 Wiberg, E.; Wiberg, N. Inorganic Chemistry; Academic Press:San Diego, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133