全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 


DOI: 10.3866/PKU.WHXB201506013

Full-Text   Cite this paper   Add to My Lib

Abstract:

铵根离子的动力学行为与生命体内的生物和化学过程密切相关.依据流体力学理论,由于铵根离子与水分子之间存在多个强氢键,其转动应较慢,但实验结果并非如此,其转动的微观机理尚不清晰.本文分子动力学模拟研究表明,水溶液中铵根离子主要以快速、大角度的跳跃方式进行转动,像水分子一样遵从扩展分子跳跃转动模型.通过微观转动模式的分解和两种转动弛豫时间的比较发现,相对其氢键骨架的扩散转动,跳跃转动对其转动速率贡献更大,并随浓度增大不断强化.与水分子氢键交换方式相比,铵根离子更倾向于在非氢键相连的水分子间发生交换.
The dynamic behavior of the ammonium ion is closely related to the biological and chemical processes of life. A fast rotation of NH4 in aqueous solution has been observed in previous experiments, which is unexpected from hydrodynamic theories because of the multiple strong hydrogen bonds (HBs) between ammonium ion and water. The mechanism behind this rotation is still not well understood. The simulations in this work show that a sudden and large-magnitude angular jump rotation occurs during the hydrogen bond exchange processes of the ammonium ion like water. The rotation of the ammonium ion can be approximately described with the extended jump model, and can be decomposed into two independent contributions: the jump rotation and the diffusive rotation of the HB frame. The rotational mobility of the ammonium ion is determined by fast jump rotation compared with the slow diffusive rotation. In addition, the contribution of the jump rotation increases with increasing NH4 concentration. Compared with water, NH4 prefers to exchange its HB between two water molecules without forming a HB each other

References

[1]  1 Nostro P. L. ; Ninham B. W. Chem. Rev 2012, 112, 2286. doi: 10.1021/cr200271j
[2]  9 Hofmeister F. Arch. Exp. Pathol. Pharmakol 1888, 24, 247. doi: 10.1016/j.orgel.2008.12.008
[3]  10 Heisler I. A. ; Mazur K. ; Meech S. R. J.Phys. Chem. B 2011, 115, 1863. doi: 10.1007/BF01918191
[4]  16 Moberg R. ; Bokman F. ; Bohman O. ; Siegbahn H. O. G. J.Am. Chem. Soc 1991, 113, 3663. doi: 10.1021/ja00010a005
[5]  17 Anderson T. L. ; Charlson A. J. ; Schwartz S. E. ; Knutti R. ; Boucher O. ; Rodhe H. ; Heintzenberg J. Science 2003, 300, 1103. doi: 10.1126/science.1084777
[6]  25 Szasz G. ; Riede W. O. ; Heinzinger K. Z. Naturforsch. A 1979, 34, 1083.
[7]  26 Jorgensen W. L. ; Gao J. J.Phys. Chem 1986, 90, 2174. doi: 10.1021/j100401a037
[8]  28 Bruge F. ; Bernasconi M. ; Parrinello M. J.Am. Chem. Soc 1999, 121, 10883. doi: 10.1021/ja990520y
[9]  43 Mazza M. G. ; Giovambattista N. ; Starr F. W. ; Stanley H. E. Phys. Rev. Lett 2006, 96, 057803. doi: 10.1103/PhysRevLett.96.057803
[10]  44 Hansen, J. P.; McDonald, I. R. Theory of Simple Liquids; Academic: London, 1986.
[11]  2 Marcus Y. Chem. Rev 2009, 109, 1346. doi: 10.1021/cr8003828
[12]  4 (a) Bakker, H. J.; Skinner, J. L. Chem. Rev. 2010, 110, 1498. doi: 10.1021/cr9001879 (b) Bakker, H. J. Chem. Rev. 2008, 108, 1456
[13]  8 (a) Yang, L. J.; Fan, Y. B.; Gao, Y. Q. J. Phys. Chem. B 2011, 115, 12456. doi: 10.1021/jp207652h (b) Zhang, Q.; Xie, W.; Bian, H.; Gao, Y. Q.; Zheng, J.; Zhuang, W. J. Phys. Chem. B 2013, 117, 2992.
[14]  18 (a) Mason, P. E.; Heyda, J.; Fischer, H. E.; Jungwirth, P. J. Phys. Chem. B 2010, 114, 13853. doi: 10.1021/jp104840g (b) Wang, S.; Orabi, E. A.; Baday, S.; Bernèche, S.; Lamoureux, G. J. Am. Chem. Soc. 2012, 134, 10419. (c) Baday, S.; Wang, S.; Lamoureux, G.; Bernèche, S. Biochemistry 2013, 52, 7091.
[15]  19 Perrin C. L. ; Gipe R. K. J.Am. Chem. Soc 1986, 108, 1088. doi: 10.1021/ja00265a044
[16]  20 Perrin C. L. ; Gipe R. K. Science 1987, 238, 1393. doi: 10.1126/science.238.4832.1393
[17]  21 Masuda Y. J.Phys. Chem. A 2001, 105, 2989. doi: 10.1021/jp003300b
[18]  24 (a) Chang, T.; Dang, L. X. J. Chem. Phys. 2003, 118, 8813. (b) Dang, L. X. Chem. Phys. Lett. 1993, 213, 541.
[19]  27 Jensen K. P. ; Jorgensen W. L. J.Chem. Theory Comput 2006, 2, 1499.
[20]  29 Bruge F. ; Bernasconi M. ; Parrinello M. J.Chem. Phys 1999, 110, 4734. doi: 10.1063/1.478360
[21]  30 Kassab E. ; Evleth E. M. ; Hamou-Tahra Z. D. J.Am. Chem. Soc 1990, 112, 103. doi: 10.1021/ja00157a016
[22]  31 Babiaczyk W. I. ; Bonella S. ; Guidoni L. ; Ciccotti G. J.Phys. Chem. B 2010, 114, 15018. doi: 10.1021/jp106282w
[23]  37 Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Clarendon Press: Oxford, 1987.
[24]  38 Nosé S. Mol. Phys 1984, 52, 255. doi: 10.1080/00268978400101201
[25]  39 Hoover W. G. Phys. Rev. A 1985, 31, 1695. doi: 10.1103/PhysRevA.31.1695
[26]  41 Darden T. ; York D. ; Pedersen L. J.Chem. Phys 1993, 98, 10089. doi: 10.1063/1.464397
[27]  42 Ponder J. W. ; Richards F. M. J.Comput. Chem 1987, 8, 1016.
[28]  45 Zasetsky A. Y. ; Petelina S. V. ; Lyashchenko A. K. ; Lileev A. S. J.Chem. Phys 2010, 133, 134502. doi: 10.1063/1.3486174
[29]  3 Ohtaki H. ; Radnai T. Chem. Rev 1993, 93, 1157. doi: 10.1021/cr00019a014
[30]  5 Marcus Y. ; Hefter G. Chem. Rev 2006, 106, 4585. doi: 10.1021/cr040087x
[31]  6 Collins K. D. Biophys. J 1997, 72, 65. doi: 10.1016/S0006-3495(97)78647-8
[32]  7 Mason P. E. ; Dempsey C. E. ; Vrbka L. ; Heyda J. ; Brady J. W. ; Jungwirth P. J.Phys. Chem. B 2009, 113, 3227.
[33]  22 Einstein, A. Investigations on the Theory of the Brownian Motion; Dover: New York, 1956.
[34]  23 Karim O. A. ; Haymet A. D. J. J.Chem. Phys 1990, 93, 5961. doi: 10.1063/1.459479
[35]  47 Qvist J. ; Mattea C. ; Sunde E. P. ; Halleb B. J.Chem. Phys 2012, 136, 204505. doi: 10.1063/1.4720941
[36]  11 Engel G. ; Hertz H. G. Ber. Bunsen.-Ges. Phys. Chem 1968, 72, 808. doi: 10.1021/j100849a009
[37]  12 Park S. ; Fayer M. D. Proc. Natl. Acad. Sci. U. S. A 2007, 104, 16731. doi: 10.1073/pnas.0707824104
[38]  13 Roberts S. T. ; Ramasesha K. ; Tokmakoff A. Accoutns Chem. Res 2009, 42, 1239. doi: 10.1021/ar900088g
[39]  14 Laage D. ; Hynes J. T. Proc. Natl. Acad. Sci. U. S. A 2007, 104, 11167. doi: 10.1073/pnas.0701699104
[40]  15 Stirnemann G. ; Wernersson E. ; Jungwirth P. ; Laage D. J.Am. Chem. Soc 2013, 135, 11824. doi: 10.1021/ja405201s
[41]  32 (a) Laage, D.; Hynes, J. T. Science 2006, 311, 832. doi: 10.1126/science.1122154 (b) Laage, D.; Stirnemann, G.; Sterpone, F.; Hynes, J. T. Accoutns Chem. Res. 2012, 45, 53.
[42]  33 Ivanov E. N. Sov. Phys. JETP 1964, 18, 1041.
[43]  34 Heyda J. ; Lund M. ; On?ák M. ; Slaví?ek P. ; Jungwirth P. J.Phys. Chem. B 2010, 114, 10843. doi: 10.1021/jp101393k
[44]  35 Berendsen H. J. C. ; Grigera J. R. ; Straatsma T. P. J.Phys. Chem 1987, 91, 6269. doi: 10.1021/j100308a038
[45]  36 Andersen H. C. J.Comput. Phys 1983, 52, 24. doi: 10.1016/0021-9991(83)90014-1
[46]  40 Berendsen H. J. C. ; Postma J. P. M. ; van Gunsteren W. F. ; DiNola A. ; Hauk J. R. J.Chem. Phys 1984, 81, 3684. doi: 10.1063/1.448118
[47]  46 (a) Zhang, X.; Zhang, Q.; Zhao, D. Acta Chim. Sin. 2012, 70, 365. [张霞,张强,赵东霞.化学学报, 2012, 70, 365.]
[48]  (b) Zhang, X.; Zhang, Q.; Zhao, D. X. Acta Phys. -Chim. Sin. 2011, 27, 2547.[张霞,张强,赵东霞.物理化学学报, 2011, 27, 2547. doi: 10.3866/PKU.WHXB20111107]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133