全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 


DOI: 10.3866/PKU.WHXB201505252

Full-Text   Cite this paper   Add to My Lib

Abstract:

依托上海光源的X射线吸收精细结构(XAFS)谱学线站(BL14W1),建立并发展了用于氢-氧质子交换膜燃料电池(PEMFC)原位XAFS实验的测试装置,以Pt/C纳米催化剂作为PEMFC的阴极催化剂, Pd/C作为燃料电池的阳极催化剂,采集在工作状态下的阴极催化剂的XAFS数据,同步监测燃料电池的电流-电压(J-V)曲线和功率密度曲线,观察到Pt/C催化剂在反应过程中不同电位下氧化态的变化,在高电位下Pt/C催化剂的表面存在较强的Pt-O键,降低了Pt/C催化剂的性能.本文同时也验证了我们所建立的实验装置和研究方法的可行性和可靠性.
We established and developed an in situ X-ray absorption fine structure (XAFS) experimental testing device for characterizing hydrogen-oxygen proton exchange membrane fuel cells (PEMFC) on XAFS beamline BL14W1 at the Shanghai Synchrotron Radiation Facility (SSRF). XAFS data were collected under the operating state of the fuel cell with Pt/C and Pd/C as the cathode and anode catalysts, respectively, while the cell current-voltage (J-V) Curve and power density curves were monitored. Changes in the oxidation states of the Pt/C catalyst were observed during the reaction process at different potentials. Strong Pt-O bonds on the surfaces of the Pt were found to be induced at high potential; this may hinder the performance of Pt and reduce its oxygen reduction reaction (ORR) activity. The study also verified the reliability and feasibility of the herein established experimental apparatus and technique

References

[1]  傅献彩,沈文霞,姚天杨.物理化学.下册.北京:高等教育出版社, 2006: 141-143.
[2]  燃料电池基础.王晓红,黄宏,译.北京:电子工业出版社, 2007: 6-7.
[3]  19 Viswanathan R. ; Liu R. ; Smotkin E. S. Rev. Sci. Instrum 2002, 73 (5), 2124. doi: 10.1063/1.1472469
[4]  22 Sanicharane S. ; Bo A. ; Sompalli B. ; Gurau B. ; Smotkin E. S. J. Electrochem. Soc 2002, 149 (5), A554.
[5]  25 Lebedeva N. P. ; Rodes A. ; Feliu J. M. ; Koper M. T. M. ; Santeen R. A. V. J. Phys. Chem. B 2002, 106, 9863. doi: 10.1021/jp0203806
[6]  28 Milan M. J. ; Gianluigi A. B. ; Georgios D. P. ; Feihong N. ; Jelena M. J. J. Phys. Chem. C 2014, 118, 8723. doi: 10.1021/jp412292w
[7]  29 Zawodzinski T. A. ; Derouin C. ; Radzinski S. ; Sherman R. J. ; Smith V. T. ; Springer T. E. ; Gottesfeld S. J. Electrochem. Soc 1993, 140 (4), 1041. doi: 10.1149/1.2056194
[8]  1 Fu, X. C.; Sheng, W. X.; Yao, T. Y. Physical Chemistry, Volume II; Higher Education Press: Beijing, 2006; pp 141-143.
[9]  6 Lin R. ; Cao C. H. ; Zhao T. T. ; Huang Z. ; Li B. J.Power Sources 2013, 223, 190. doi: 10.1016/j.jpowsour.2012.09.073
[10]  21 Rice C. ; Tong Y. ; Oldfield E. ; Wieckowski A. ; Hahn F. ; Gloaguen F. ; Leger J. M. ; Lamy C. J. Phys. Chem. C 2000, 104, 5803. doi: 10.1021/jp0007179
[11]  24 Tkach I. ; Panchenko A. ; Kaz T. ; Gogel V. ; Friedrich K. A. ; Roduner E. Phys. Chem. Chem. Phys 2004, 6 (23), 5419. doi: 10.1039/b411108g
[12]  26 Kim C. S. ; Korzeniewski C. Anal. Chem 1997, 69 (13), 2349. doi: 10.1021/ac961306k
[13]  30 Giorgia G. ; Agnieszka W. ; Marco M. ; Luca O. ; Emiliano P. ; Sonia D. ; Arianna M. ; Roberto M. ; Andrea D. C. J. Phys. Chem. C 2012, 116 2012, 116, 12791. doi: 10.1021/jp2099569
[14]  31 Bridgid N. W. ; Bin F. ; Shan S. Y. ; Valeri P. ; Zhu P. Y. ; Rameshwori L. ; Chen Y. S. ; Jin L. ; Jun Y. ; Yang L. F. ; Shao M. H. ; Zhong C. J. Chem. Mater 2012, 24, 4283. doi: 10.1021/cm301613j
[15]  3 Roth C. ; Martz N. ; Buhrmester T. ; Scherer J. ; Fuess H. J. Phys. Chem. C 2002, 4 (15), 3555.
[16]  5 Scott F. J. ; Roth C. ; Ramaker D. E. J. Phys. Chem. C 2007, 111 (30), 11403. doi: 10.1021/jp072698+
[17]  7 Cao C. H. ; Lin R. ; Zhao T.T. ; Huang Z. ; Ma J. X. Acta Phys. -Chim. Sin 2013, 29, 1. doi: 10.3866/PKU.WHXB201209272
[18]  曹春晖; 林瑞; 赵天天; 黄真; 马建新. 物理化学学报, 2013, 29, 1. doi: 10.3866/PKU.WHXB201209272
[19]  8 Shao M. H. ; Adzic R. R. J. Phys. Chem. B 2005, 109, 16563. doi: 10.1021/jp053450s
[20]  14 Russell A. E. ; Maniguet S. ; Mathew R. J. ; Yao J. ; Roberts M. A. ; Thompsett D. J. Power Sources 2001, 96 (1), 226. doi: 10.1016/S0378-7753(01)00573-0
[21]  27 Shin J. ; Korzeniewski C. J. Phys. Chem 1995, 99 (11), 3419. doi: 10.1021/j100011a003
[22]  2 Ryan, O. H.; Whitney, C.; Fritz, B. P. Fuel Cell Fundamentals; translated by Wang, X. H.; Huang, H. Publishing House of Electronics Industry: Beijing, 2007; pp 6-7. Ryan, O. H.; Whitney. C.; Fritz, B. P.
[23]  4 Stoupin S. ; Chung E. H. ; Chattopadhyay S. ; Segre C. U. ; Smotkin E. S. J. Phys. Chem. B 2006, 110 (20), 9932. doi: 10.1021/jp057047x
[24]  9 Smith M. C. ; Gilbert J. A. ; Mawdsley J. R. ; Seifert S. ; Myers D. J. J. Am. Chem. Soc 2008, 130 (26), 8112. doi: 10.1021/ja801138t
[25]  10 Shao M. H. ; Liu P. ; Adzic R. R. J. Am. Chem. Soc 2006, 128, 7408. doi: 10.1021/ja061246s
[26]  11 Teliska M. ; O'Grady W. E. ; Ramaker D. E. J. Phys. Chem. B 2005, 109 (16), 8076. doi: 10.1021/jp0502003
[27]  12 Maniguet S. ; Mathew R. J. ; Russell A. E. J. Phys. Chem. B 2000, 104 (9), 1998. doi: 10.1021/jp992947x
[28]  13 Zhang H. Y. ; Cao C. H. ; Zhao J. ; Lin R. ; Ma J. X. Chin. J. Catal 2012, 33, 222.
[29]  张海艳; 曹春晖; 赵健; 林瑞; 马建新. 催化学报, 2012, 33, 222.
[30]  15 Viswanathan R. ; Hou G. ; Liu R. ; Bare S. R. ; Modica F. ; Mickelson G. ; Segre C. U. ; Leyarovska N. ; Smotkin E. S. J. Phys. Chem. B 2002, 106 (13), 3458. doi: 10.1021/jp0139787
[31]  16 Teliska M. ; Murthi V. S. ; Mukerjee S. ; Ramaker D. E. J. Phys. Chem. C 2007, 111 (26), 9267. doi: 10.1021/jp071106k
[32]  17 Thomas M. A. ; Badri S. ; Jamie S. L. ; Nagappan R. ; David E. B. ; David E. R. ; Sanjeev M. J. Phys. Chem. C 2010, 114 (2), 1028. doi: 10.1021/jp908082j
[33]  18 Fan Q. B. ; Pu C. ; Smotkin E. S. J. Electrochem. Soc 1996, 143 (10), 3053. doi: 10.1149/1.1837163
[34]  20 Ian K. ; Dunesh K. ; Adam Y. ; Nicholas D. ; Smotkin E. S. J. Am. Chem. Soc 2010, 132, 17611. doi: 10.1021/ja1081487
[35]  23 Vijayaraghavan G. ; Gao L. ; Korzeniewski C. Langmuir 2003, 19, 2333. doi: 10.1021/la0207466
[36]  32 Shin-ichi N. ; Takashi A. ; Masakuni Y. ; Takuya O. ; Hiroyuki O. ; Takayuki I. ; Hajime K. ; Tomoya U. ; Mizuki T. ; Yasuhiro I. J. Phys. Chem. C 2013, 117, 13094. doi: 10.1021/jp402438e

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133