本文结合近年来亲金属作用研究领域的进展,针对本课题组在环三核亚铜配合物方面的最新研究成果,讨论了两个铜(Ⅰ)-铜(Ⅰ)作用相差悬殊的体系。一是通过构筑具有环三核单元的三棱柱笼状配合物,确认在正堆积模式下即使环三核单元之间亲铜作用极弱依然可以在磷光发射态中产生强亲铜作用,且通过配体的预留配位点与Cu2I2簇连结从而得到自校准大范围发光温度计;二是通过与亲铜作用正交的Br-Br卤键,实现环三核亚铜配合物前所未有的极短铜(Ⅰ)-铜(Ⅰ)距离,通过各种电子结构分析方法研究其本质。结果表明即使当铜(Ⅰ)-铜(Ⅰ)距离很接近铜的范德华半径和时,其本质依然为闭壳层作用,而Br-Br作用总为闭壳层作用,且该体系中最强的Br-Br作用很好地体现出一个Br原子的σ穴和另一个Br原子的负静电势区域的匹配性。 This monograph focuses on recent progress in the research field of metallophilicity, in combination of our latest results on Cu(Ⅰ)-based cyclic trinuclear complexes, mainly discussing two examples with very different cuprophilicity. One is by constructing triangular coordination prisms bearing cyclic trinuclear units, confirming that strong cuprophilic attraction could exist in the phosphorescent emissive state under frontal packing mode even when the cuprophilicity is extreme weak at ground state, and by coordination with a Cu2I2 cluster with an additional coordinate site in the ligand, so that a self-calibrated wide-range luminescent molecular thermometer was obtained. The other is the realization of the shortest Cu-Cu distance so far in this field by Br-Br halogen bond orthogonal to cuprophilicity, followed by the investigation using several kinds of electronic structure analysis. The result shows that even when the Cu-Cu distance approaches the van der Waals radii sum of Cu, its nature is still closed-shell interaction, which is also the nature of all Br-Br interaction, and the strongest Br-Br interaction in this system displays good matching between the σ-hole of a Br atom and the belt of negative potential of another Br atom
References
[1]
3 Zhou J. ; Tan X. ; Hu F. ; Zou H. H. ; Paz F. A. A. ; Fu L. ; Zhao R. Dalton Trans. 2016, 45, 11292. doi: 10.1039/C6DT00883F
[2]
4 Petty J. T. ; Sergev O. O. ; Ganguly M. ; Rankine I. J. ; Chevrier D.M. ; Zhang P. J. Am. Chem. Soc. 2016, 138, 3469. doi: 10.1021/jacs.5b13124
[3]
5 Su C. Y. ; Pan M. Basis and Progress of Coordination Supramolecular Structural Chemistry Beijing: Science Press, 2010.
[4]
10 Tsipis, A. C. Coord. Chem. Rev. 2016, doi:10.1016/j.ccr.2016.08.005
[5]
12 Dias H. V. R. ; Diyabalanage H. V. K. ; Eldabaja M. G. ; Elbjeirami O. ; Rawashdeh-Omary M. A. ; Omary M. A. J. Am. Chem. Soc. 2005, 127, 7489. doi: 10.1021/ja0427146
[6]
1 Schmidbaur H. ; Schier A. Chem. Soc. Rev. 2008, 37, 1931. doi: 10.1039/B708845K
[7]
2 Schmidbaur H. ; Schier A. Chem. Soc. Rev. 2012, 41, 370. doi: 10.1039/C1CS15182G
[8]
6 Yadav D. ; Siwatch R. K. ; Mukherjee G. ; Rajaraman G. ; Nagendran S. Inorg. Chem. 2014, 53, 10054. doi: 10.1021/ic5008389
[9]
7 Yam V. W. W. ; Lo Au ; V. K. M. ; Leung S. Y. L. Chem. Rev. 2015, 115, 7589. doi: 10.1021/acs.chemrev.5b00074
[10]
8 Che C. M. ; Lai S. W. Coord. Chem. Rev. 2005, 249, 1296. doi: 10.1016/j.ccr.2004.11.026
[11]
15 Kim K. H. ; Kim J. G. ; Nozawa S. ; Sato T. ; Oang K. Y. ; Kim T.W. ; Ki H. ; Jo J. ; Park S. ; Song C. ; Sato T. ; Ogawa K. ; Togashi T. ; Tono K. ; Yabashi M. ; Ishikawa T. ; Kim J. ; Ryoo R. ; Kim J. ; Ihee H. ; Adachi S. Nature 2015, 518, 385. doi: 10.1038/nature14163
[12]
17 Grimes T. ; Omary M. A. ; Dias H. V. R. ; Cundari T. R. J. Phys. Chem. A 2006, 110, 5823. doi: 10.1021/jp0605146
[13]
18 Nitsch J. ; Lacemon F. ; Lorbach A. ; Eichhorn A. ; Cisnetti F. ; Steffen A. Chem. Commun. 2016, 52, 2932. doi: 10.1039/C5CC09659F
[14]
41 Persch E. ; DumeleO. ; Diederich F. Angew. Chem. Int. Ed. 2015, 54, 3290. doi: 10.1002/anie.201408487
[15]
42 Cavallo G. ; Metrangolo P. ; Milani R. ; Pilati T. ; Priimagi A. ; Resnati G. ; Terraneo G. Chem. Rev. 2016, 116, 2478. doi: 10.1021/acs.chemrev.5b00484
[16]
43 Liu M. H. Acta Phys. -Chim. Sin. 2017, 33, 451. doi: 10.3866/PKU.WHXB201702151
[17]
45 Yan D. ; Delori A. ; Lloyd G. O. ; Fri??i? T. ; Day G. M. ; Jones W. ; Lu J. ; Wei M. ; Evans D. G. ; Duan X. Angew. Chem. Int. Ed. 2015, 50, 12483. doi: 10.1002/anie.201106391
[18]
16 Jarzembska K. N. ; Kaminski R. ; Fournier B. ; Trzop E. ; Sokolow J.D. ; Henning R. ; Chen Y. ; Coppens P. Inorg. Chem. 2014, 53, 10594. doi: 10.1021/ic501696y
[19]
19 He J. ; Yin Y. G. ; Wu T. ; Li D. ; Huang X. C. Chem. Commun. 2006, 27, 2845. doi: 10.1039/B601009A
[20]
20 Xiao Q. ; Zheng J. ; Li M. ; Zhan S. Z. ; Wang J. H. ; Li D. Inorg. Chem. 2014, 53, 11604. doi: 10.1021/ic5016687
[21]
22 Ni W. X. ; Qiu Y. M. ; Li M. ; Zheng J. ; Sun R. W. Y. ; Zhan S. Z. ; Ng S. W. ; Li D. J. Am. Chem. Soc. 2014, 136, 9532. doi: 10.1021/ja5025113
[22]
24 Wang J. H. ; Li M. ; Zheng J. ; Huang X. C. ; Li D. Chem. Commun. 2014, 50, 9115. doi: 10.1039/C4CC04100C
[23]
28 Wang X. L. ; Zheng J. ; Li M. ; Ng S. W. ; Chan S. L. F. ; Li D. Cryst. Growth Des. 2016, 16, 4991. doi: 10.1021/acs.cgd.6b00571
[24]
29 Tong, Z. H., Zhang, J. C., Zhu, J. C., Fan, M. G., Fu, H. B., Wu, H.B., Wu, Y. S., Xu, J. H., Zhu, A. P., Fan, P., Fu, W. F., Chi, S. M., Liu, C. Y. Molecular Photochemistry, 1st ed.; Science Press: Beijing, 2013;pp 533-539.
[25]
30 Leitl M. J. ; Kuchle F. R. ; Mayer H. A. ; Wesemann L. ; Yersin H. J. Phys. Chem. A 2013, 117, 11823. doi: 10.1021/jp402975d
[26]
32 Mayer I. Chem. Phys. Lett. 1983, 97, 270. doi: 10.1016/0009-2614(83)80005-0
44 Sivchik V. V. ; Solomatina A. I. ; Chen Y. T. ; Karttunen A. J. ; Tunik S. P. ; Chou P. T. ; Koshevoy I. O. Angew. Chem. Int. Ed. 2015, 54, 14057. doi: 10.1002/anie.201507229
[29]
苏成勇; 潘梅. 配位超分子结构化学基础与进展, 北京: 科学出版社, 2010, 81- 83.
[30]
9 Phillips D. L. ; Che C. M. ; Leung K. H. ; Mao Z. ; Tse M. C. Coord. Chem. Rev. 2005, 249, 1476. doi: 10.1016/j.ccr.2004.09.015
[31]
11 Dias H. V. R. ; Polach S. A. ; Wang Z. J. Fluorine Chem. 2000, 103, 163. doi: 10.1016/S0022-1139(99)00313-9
[32]
13 Vorontsov I. I. ; Kovalevsky A. Yu. ; Chen Y. S. ; Graber T. ; Gembicky M. ; Novozhilova I. V. ; Omary M. A. ; Coppens P. Phys. Rev. Lett. 2005, 94, 193003. doi: 10.1103/PhysRevLett.94.193003
[33]
14 Hu B. ; Gahungu G. ; Zhang J. J. Phys. Chem. A 2007, 111, 4965. doi: 10.1021/jp0689215
[34]
21 Ni W. X. ; Li M. ; Zheng J. ; Zhan S. Z. ; Qiu Y. M. ; Ng S. W. ; Li D. Angew. Chem. Int. Ed. 2013, 52, 13472. doi: 10.1002/anie.201308135
[35]
23 Gao G. F. ; Li M. ; Zhan S. Z. ; Lv Z. ; Chen G. H. ; Li D. Chem. Eur. J. 2011, 17, 4113. doi: 10.1002/chem.201100081
[36]
25 Zhan S. Z. ; Li M. ; Zhou X. P. ; Li D. ; Ng S. W. RSC Adv. 2011, 1, 1457. doi: 10.1039/C1RA00566A
[37]
26 Zhan S. Z. ; Li M. ; Zhou X. P. ; Wang J. H. ; Yang J. R. ; Li D. Chem. Commun. 2011, 47, 12441. doi: 10.1039/C1CC14303D
[38]
27 Zhan S. Z. ; Li M. ; Ng S. W. ; Li D. Chem. Eur. J. 2013, 19, 10217. doi: 10.1002/chem.201204632